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ABSTRACT

We apply univariate GARCH models to construct a computationally simple filter
for estimating the conditional correlation matrix of asset returns. The proposed
Variance Implied Conditional Correlation (VICC) exploits the polarization result
that links the correlation between two standardized variables with the variances of
linear combinations thereof. In a Monte Carlo study, we show that the VICC yields
accurate correlation estimates for common choices of the correlation dynamics. We
also provide an empirical application to cross hedging that confirms the effectiveness
of the VICC.
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“Since all models are wrong the scientist cannot obtain a ‘correct’ one by excessive
elaboration.”

- George E. P. Box, 1976.

1. Introduction

Financial markets are inherently multidimensional. In this context, portfolio risk in-
volves not only the volatility of asset returns, but also the correlations among them.
The latter can be used for managing diversification and hedging purposes, and are
thus an important element of financial planning for any investor. Due to the dynamic
nature of the comovement between assets, the main difficulty lies in obtaining timely
conditional estimates of the correlation between the asset returns.

Typically, conditional correlations are jointly estimated via a multivariate modelling
approach, such as Multivariate Generalized AutoRegressive Conditional Heteroskedas-
ticity (MGARCH) models. This approach usually requires the optimization of a mul-
tivariate likelihood function, which can be numerically challenging and can lead to
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parameter instability in the case of a general parametrization (Bauwens, Laurent, and
Rombouts 2006). Moreover, most types of MGARCH models suffer from the so-called
curse of dimensionality which makes their use in practice often infeasible. More con-
strained versions of the MGARCH models, like the Dynamic Conditional Correlation
(DCC) model of Engle (2002) or the Generalized Orthogonal GARCH (GO-GARCH)
model of van der Weide (2002), are computationally more convenient, but they may
be too restrictive in terms of the conditional correlation dynamics that they can ac-
commodate (see e.g., Caporin and McAleer, 2013).

In this paper, we present a simple and flexible filter for estimating the pairwise
conditional correlations among variables. The proposed Variance Implied Conditional
Correlation (VICC) exploits the polarization result that links the correlation between
two standardized variables with the variances of linear combinations thereof. The
VICC thus only requires the estimation of univariate variance models. There is a rich
variety of well-studied univariate variance models available, namely the class of uni-
variate GARCH models, which offer a lot of flexibility in modelling the univariate
variance process, while only requiring the optimization of a univariate likelihood func-
tion. Furthermore, by using a pairwise estimation method, the VICC avoids the curse
of dimensionality which most types of MGARCH models suffer from.

The VICC is referred to as a filter since we do not ambition efficiency under a
particular model specification, but rather aim for reliability and accuracy in terms of
correlation estimates under a wide set of possible models for the conditional correla-
tion dynamics. The use of a filter rather than a fully specified MGARCH model is
consistent with the statement of George E. P. Box (1976) that “Since all models are
wrong the scientist cannot obtain a ‘correct’ one by excessive elaboration.” It is also
consistent with the view of Caporin and McAleer (2013) that, as the exact specifica-
tion of the conditional correlation is unknown, conditional correlation models should
be considered as filters for obtaining reliable estimates of the conditional correlations,
even if they arise through possible model misspecification.

We expect that, since the VICC only requires the optimization of univariate likeli-
hood functions, it will lead to more stable and reliable conditional correlation estimates
when comparing with the more complex MGARCH models. To assess the reliability
of the conditional correlation estimates we perform a Monte Carlo study in which the
VICC is misspecified for all the considered correlation processes. However, we indeed
find that the VICC yields accurate correlation estimates for common choices of the
correlation dynamics.

We study the usefulness of the VICC to determine the portfolio allocation needed
when cross hedging the weekly S&P 500 return using weekly returns of futures on the
interest rate, the exchange rate between the US Dollar and the Euro, and the VIX. We
conclude that VICC-based cross hedging performs at least as good as cross hedging
using the DCC and GO-GARCH model in terms of variance reduction and achieved
decorrelation, while generating a lower turnover and being more simple to compute.
Cross heding by using the VICC also outperforms the the approach of cross hedging
using an unconditional hedge ratio and an Exponentially Weighted Moving Average
(EWMA) covariance model in terms of variance reduction and achieved decorrelation.

The remainder of the paper is organised as follows. Section 2 introduces the Variance
Implied Conditional Correlation (VICC) filter and discusses its properties. Section 3
presents a Monte Carlo study to evaluate the performance of the VICC compared to
some benchmark models. In Section 4, we assess the usefulness of the VICC in an
empirical cross hedging application. Section 5 concludes.



2. Variance implied conditional correlation

We first present the well-known polarization result for the unconditional correlation
estimator and extend this result to the conditional case. Next, we use this result to
construct the Variance Implied Conditional Correlation (VICC) pairwise correlation
filter. We then elaborate on some further properties of the VICC correlation matrix
filter. Finally, we use news impact surfaces to analyze the responsiveness of the VICC-
based correlation to the standardized return innovations.

2.1. Definitions

The polarization result connects the variances of a sum of random variables (possibly
standardized) and their difference to their covariance. The result is often used in robust
statistics and high-frequency financial econometrics. For example, Gnanadesikan and
Kettenring (1972) use it to obtain robust estimates of the unconditional correlation,
while Ma and Genton (2002) exploit the polarization result to robustly estimate the
autocovariance function. More recently, Ait-Sahalia, Fan, and Xiu (2010) estimate a
high-frequency data based realized covariance via the polarization result. We work
with standardized data, henceforth we focus on variables with zero mean and unit
variance. Our first result pertains to the iid case.

Property 1. Let Z; and Z; be bivariate standard normally distributed with correlation
coefficient p;j. Assume there are T' observations of Z; and Z; collected in samples z;
and zj, i.e.,

2 = (Zig, o zir)  and  zj = (21, 2T)-

Denote the sample variances of Z; + Z; and Z; — Z; by /f;iﬂ' and ﬁi_j, respectively.
We then have that p;; defined as:

~ ~

~_ higi—hi
Pij = = =
hitj + hij

is a consistent estimator for p;j. Moreover, it has the lowest asymptotic variance (i.e.,
it is the most efficient) among the following class of estimators,

_ hi
Pij('Y) = ?L

where /]{iﬂ('y) and Ei_j(*y) denote the sample variances of vZ; + (1 —~)Z; and vZ; —
(1 —v)Z;, respectively, with ~ € [0, 1].

The consistency of p;; follows directly from the law of large numbers. We prove the
asymptotic efficiency result in Appendix A.

For most asset returns, there is overwhelming evidence of time-variation in their
comovement. To exploit this feature, we use time series models in which we denote
two time series processes by {Z; s} and {Z; s}, whereby the relevant information set
to predict their future comovement changes on each date. The following property can
then be used to obtain a conditional correlation estimate.



Property 2. Let {Z; s} and {Z; s} be two stochastic time series processes with s <
t —1. Assume that conditionally on the information set Fy_1, Z;; and Z;; have mean
zero, unit variance, and correlation equal to p;j:. We then have that

pit = E((Zit + Zj2)*|Fi-1] — E(Zit — Zjt)?|Fi1]
P EB(Zig + Za)2 |\ Fee1) F E(Ziy — Zj0)%Fia]’

where E[-|Fi_1] denotes the conditional expectation operator.

It thus follows that the conditional variances of the sum and difference of standardized
variables can be exploited to obtain the pairwise conditional correlation.

2.2. Implementation

We now use Property 2 to construct a filter for the conditional correlation matrix Ry
of the asset return vector ry = (ry4,...,7 N,t)’ , conditional on the information available
up until time ¢ — 1. The procedure requires to first standardize the returns.

We suppose to have a filter for the conditional mean fi;; and variance h;; of each
series of asset returns r;; for all IV assets:

i

=0Tty e, Tig—1), 0
it :/h\
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Traditional filters for the conditional mean are often based on (extensions of) Autore-
gressive Moving Average (ARMA) models, while traditional filters for the conditional
variance are often based on (extensions of) GARCH models. There is a rich variety
of well-studied ARMA and GARCH models which offer a lot of flexibility in mod-
elling the conditional mean and variance process. Without loss of generality, we use
the standard GARCH(1,1) setting of Bollerslev (1986) as a conditional variance fil-
ter throughout this paper. We summarize this model in Appendix B. Extensions to
other GARCH-type models or the inclusion of ARMA terms in the mean filter are
straightforward.

Using the mean and variance filters in Equation (1), we can compute the standard-
ized returns z;; as follows:

Zip = ——- (2)

Next, we also suppose to have a filter to compute the conditional variances of the sum
and difference of these standardized returns:

it (Zig + 215 e, Zig—1 + Zj4—1)s 3)

ifj(zi,l T 241y e Rigt—1 Zj,tfl)-

Motivated by Property 2, we can now construct the Variance Implied Conditional Cor-
relation (VICC) which proxies the conditional correlation by using only the univariate



conditional variances of Equation (3):

T
Piji = =L for i je{1,2,...,N}, (4)
Pitje + hi-ju

where p;;; denotes the bivariate VICC correlation filter.

Next, we stack the various bivariate VICC correlation filters in a N x N matrix R,
with ones on the diagonal and with the (4, j)-th element equal to pj;, for i # j. In
the bivariate case, it is clear from the determinant value 1 — ﬁ%Q,t that the resulting
correlation matrix filter is guaranteed to be positive-definite. However, when N > 2,
R; is no longer guaranteed to be positive-definite. Therefore, we define the VICC
correlation matrix as a regularized version of R; based on the regularization approach

of Boudt et al. (2018). Specifically, the VICC correlation filter ﬁ:lcc is a convex

combination between ﬁt and the lagged VICC correlation matrix IA{,\:?C

~ VICC

R, =(1—r) Retr R, (5)

where r; € [0, 1] denotes the regularization intensity, which is only different from zero
. ~VICC |, ..
when the smallest eigenvalue of R,  is smaller than or equal to zero. It is given by:

s A
Ky = max { ¢m1n min,t , 0} ’ (6)
1- )\min,t

where Apin ¢ is the smallest eigenvalue of G;_ll f{th__Tl, with G;_1 being the square root
~ VICC

of f{:ﬁc obtained by using the Cholesky factorization such that R,_; = G;_1G]_;.
Furthermore, i, is a positive, near-zero tuning parameter, which we set at 107°
in the application, and max{-, -} is the maximum operator. In Appendix C, we show
the explicit derivation of x; assuming a positive-definite initialization of the VICC
correlation filtering process.

The VICC-based correlation matrix has the typical shrinkage notation as in Ledoit
and Wolf (2004), but uses the lagged correlation matrix f{;/i(i as target matrix instead
of the usual target matrices based on the identity matrix, equicorrelation matrix or
single factor model. As such, it is aligned with the time-variation in the correlation
filter. As in Boudt et al. (2018), we find that the time-varying regularization parame-

ter k¢ is typically a small number and the regularization is only applied when needed.
~ VICC

Finally, note in Equations (5)—(6) that R, = ﬁt when Amint > ¥min. The regu-
larization should thus not be confused with exponential smoothing as used in Pozzi,
Di Matteo, and Aste (2012), where the weight on the lagged correlation prediction is
typically high and constant over time. The dynamics of the VICC filter are driven by
the dynamics in the h;;;; and h;_;; estimates defining the pj;; elements in Ry.

2.3. Further properties

A key property of the VICC filter is that its implementation only requires univari-
ate GARCH estimations. It thus avoids the curse of dimensionality which affects the
(quasi-)Maximum likelihood estimation of many multivariate GARCH models (see
e.g., Boudt et al. (2019) for a recent survey and Pakel et al. (2019) for a recent discus-
sion in the context of DCC models). In contrast with the (quasi-)Maximum likelihood



estimation of the DCC model, the VICC parameter estimation is embarrassingly par-
allel and therefore computationally scalable. A further property is that the VICC
filter is designed to yield a well-defined correlation matrix, irrespective of the mean
and GARCH variance specification used. As such, it is flexible and it can accomodate
the many existing GARCH model specifications (see, e.g., Bollerslev (2008) for an
overview). Alternatively, model averaging can be used by setting:

Rk k)

ij W b for i,5€{1,2,...,N}, (7)
AL
Z+_]t i+7,t

where K is the number of GARCH model implementations considered and
wW .. w® are the weights assigned to each implementation, with Zszl w®) =1.
We further have that the VICC filter directly leads to dynamic covariance matrix
filters, which are useful for portfolio optimization (see e.g., Boudt, Danielsson, and
Laurent (2013)), dynamic beta estimation (see e.g., Engle (2016)) and multivariate
hedging, as we document in Section 4. In fact, let f)t be the NV x N diagonal matrix with

element (7,7) equal to \/ﬁm, as defined in Equation (1). Then the VICC covariance
matrix filter is given by:

17°° Z D,RD,. (®)

where the values of f)t and ﬁ:lcc follow from the application of the mean, variance and
correlation filters in Equations (1)—(7). Those equations thus provide a flexible dynamic
filtering setup. They do not describe a model for the return generating process, for
the same reasons as mentioned by Caporin and McAleer (2013) in case of the DCC
model. As compared to the DCC filter, the VICC filter uses a different correlation
specification and has the advantage of using univariate estimations. For these reasons,
it can thus be seen as an alternative method.

2.4. VICC news itmpact surface

The VICC correlation filter pi2; in Equation (4) inherits its dynamic properties from
the dynamics in the estimated conditional variances of the sum and difference of the
standardized return innovations z1; and z2;. Due to the non-linear transformation of
those input series, it is analytically cumbersome to derive the dynamic properties of
the VICC correlation filter. Instead, we recommend to use the so-called news impact
surface for visualizing the impact of the standardized return innovation on the VICC
correlation filter.

The news impact surface is the multivariate extension of the news impact curve
which was proposed by Pagan and Schwert (1990) and Engle and Ng (1993) to analyze
the impact of innovations on the GARCH variance. Cappiello, Engle, and Sheppard
(2006) used news impact surfaces to analyze the impact on correlation dynamics. The
VICC news impact surface depends on the variance processes chosen in (3). Suppose
for instance that the VICC in Equation (4) is constructed using a GARCH(1,1) spec-
ification in hiyo; and hy_o; with parameters 0 = (w12, 0142, B142, w1—2, ¥1-2, f1-2)’
(see Appendix B for more details). We can then compute the news impact surface
of piji by setting hijo¢—1 and hi_o;—1 to their long term mean value (namely,
hiye = wiye/[1 — a142 — Pig2] and hi_p = wi_2/[l — ay_2 — B1_2], respectively).



Under these assumptions we then have that:

¢+ arpa(z1 + 22)% — a1a(z1 — 22)?

d+ anq2(z1 + 22)2 + a1_2(21 — 22)?

ﬁngCRCCH (21, 22) =

(9)

with ¢ = wip2—wi—2+PB1y2hi12—Fi1—2hi—2 and d = wi1a+wi_o+Bi42h142+B1—2h1-2.

Figure (1) shows p}j7 as a function of 21 and 2 with values ranging from -3 to 3.
We consider four different news impact surfaces for the VICC-based correlation. The
left panels (a) and (c) show persistent VICC correlation processes, while the right pan-
els (b) and (d) show reactive VICC correlation processes. The top plots correspond to
a positive value for ¢ while ¢ is negative for the lower news impact surfaces. Panel (a)
has the parameter values 6 = (0.04, 0.05,0.85,0.02,0.01,0.90)". Note that the GARCH
processes used for the sum and difference of the innovations are persistent, leading to
a persistent VICC correlation filter with a rather flat news impact surface. Panel (b)
corresponds to the parameter vector 6 = (0.04,0.05,0.25,0.02,0.01,0.20)". The lower
persistence of the GARCH(1,1) models lead to a more reactive VICC correlation. A
large degree of co-movement in the standardized return innovations has a bigger im-
pact on the resulting VICC-based correlation estimate. Note that a larger value for
either ajyo or aj_s would result in an even more reactive VICC correlation. Pan-
els (¢) and (d) have the parameter values 6 = (0.02,0.05,0.85,0.04,0.01,0.90)" and
6 = (0.02,0.05,0.25,0.04,0.01,0.20)’, respectively. Note that only the w;_9 and wy_o
parameters are switched compared to the previous news impact surfaces. In this case
when there are no return innovations the VICC correlations in panels (c¢) and (d) are
negative, i.e. -0.69 and -0.31, respectively.



Figure 1. VICC news impact surfaces in case a symmetric GARCH(1,1) specification is used for the variances
of the sum and difference of asset returns.

(c) Persistent VICC correlation with h1y1o < h1_2. (d) Reactive VICC correlation with h112 < h1_o.

3. Monte Carlo study

It is clear that by construction the estimation of the parameters of the variance pro-
cesses determining the dynamics in the VICC correlation matrix filter in Equations
(4)—(5) is computationally convenient, as it only requires univariate GARCH model
estimations and is thus embarassingly parallel. In this section, we use numerical sim-
ulations to evaluate the performance of the VICC in capturing the dynamics in the
conditional correlation for a broad range of conditional correlation processes. For all
the considered processes, the VICC is misspecified. The study shows that, despite the
misspecification, the VICC still yields reliable estimates of the conditional correla-
tion, whatever the underlying conditional correlation process is. We first discuss the
benchmark models and then present the bivariate and multivariate Monte Carlo study,
respectively.

3.1. Benchmark models

We compare the performance of the VICC-based correlation filter against four bench-
mark estimators by comparing the Mean Absolute Error (MAE) and Mean Squared
Error (MSE) in estimating the in-sample correlation. As a first benchmark, we opt for



the EWMA covariance model which requires no estimation (see e.g., Engle (2009)).
We describe the model in Appendix D. The second benchmark model is the standard
workhorse in conditional correlation estimation, namely the DCC specification of En-
gle (2002). Its estimation still requires the optimization of a multivariate likelihood
function. We review the DCC model in Appendix E. The third benchmark model is
the GO-GARCH model of van der Weide (2002). By using an unobserved independent
factor framework, this model is another feasible MGARCH model for the estimation
of larger systems. We provide details of the GO-GARCH model in Appendix F. The
last benchmark is from the related work of Harris and Shen (2003) (HS hereafter)
in which they imply the conditional covariance via the polarization result applied to
variances of returns rather than to variances of standardized returns. We expect the
VICC to be a more reliable estimator, as the correlation embedded in the HS method
is an unbounded function of the univariate variance estimates which may lead to cor-
relation estimates that violate the absolute bounds for a correlation, i.e., |pj*®| > 1. If
this violation occurs we truncate the HS correlation estimate at -1 or 1 as appropriate
(see e.g., Zhang (2011)). Moreover, the HS method does not distinguish between the
dynamics of the conditional correlation and the conditional variance. Since the seminal
paper of Engle (2002) introducing the DCC model, it has become the standard to use
separate equations for modelling the conditional variances and correlations. Details of
the HS method are provided in Appendix G.

3.2. Bivariate simulation

We consider a similar bivariate Monte Carlo setup as in Engle (2002) and Creal, Koop-
man, and Lucas (2011) in which the true correlation structure can be different from
the one assumed by the econometrician. The return series with conditional variances
hi+ and hg, are constructed as follows:

Tt = /P12,
rot = /N2,

where z;; and z2; are bivariate standard normally distributed with a (possibly time-
varying) correlation coefficient p;. In a similar way as in Engle (2002), the data gen-
erating process further consists of the following two standard GARCH(1,1) models:

(10)

hie=0.01+40.05r7 , | +0.94h1 41,

9 (11)

h27t =0.5 + 0'2T2,t71 + 0.5h27t_1.
We examine how the correlation filters perform under different forms of misspecifica-
tion by considering seven possible true correlation processes. First, as in Engle (2002)
and Creal, Koopman, and Lucas (2011), we consider the constant, sine, fast sine, step
and ramp correlation processes:

constant p; = 0.9,

sine p; = 0.5+ 0.4 cos (27t/200),
fast sine p; = 0.5+ 0.4 cos (27t/20),
step p: = 0.9 — 0.5(¢ > 500),

ramp p; = mod (¢/200) .

The sine correlation process exhibits gradual changes, while the fast sine correlation



process contains fast changes. The step correlation process appears to be constant,
but exhibits an abrupt change. These abrupt changes are also found in the ramp
correlation process.

In addition, we also assume a mean-reverting Dynamic Conditional Correlation

(DCC) process:

* DCC py = 22—,
. [ 01 005 Hieq Ap1%2i1
with Q, = [ 005 01 ] +0.05 [ S +0.85Q,_; -

The seventh process is a conditional correlation process which is associated to the
Diagonal BEKK (DBEKK) model (Engle and Kroner 1995), namely:

e DBEKK p; = \/% with  hygs = 0.14 + 0171 417941 + 0.69h194 1
with hi and ho; as defined in Equation (11). In terms of the number of replica-
tions and time series length, we follow Engle (2002) by simulating 200 series of 1000
observations.

Table 1 shows the MAE and MSE of the VICC, DCC, EWMA, GO-GARCH and
HS method for each of the seven considered correlation processes, and their corre-
sponding HAC standard errors between parentheses. The MAE of the VICC ranges
in between 0.0060 for the constant correlation process, and 0.2267 for the fast sine
correlation process. In all the cases where the true correlation process is not a DCC
process, the performance of the VICC is either better than (sine, fast sine, step, ramp
and DBEKK) or similar to (constant) the DCC model. Note from the HAC stan-
dard errors that for the sine, step and ramp correlation process the outperformance
is statistically significant for both the MAE and MSE. For the fast sine correlation
process the outperformance is only statistically significant for the MSE. In case the
econometrician knows that the true process is a DCC process, it is clearly optimal
to use a DCC. However, in practice, as mentioned by Caporin and McAleer (2013),
the DCC process is not a realistic data generating process. In addition to its better
or equal performance performance, the VICC is also easier to compute. Finally, for
all the considered correlations processes, the EWMA, GO-GARCH and HS method
perform (drastically) worse than both the VICC and the DCC correlation filters.

3.3. Multivariate simulation

Table 2 and 3 present the MAE and MSE results, respectively, for the N-dimensional
returns simulated using a two-block Dynamic Equicorrelation (DECO) specification
for the conditional correlation matrix given by:

1—p?,)In, 0 L
R, = ( pé’t) ) (1 p3,)In, ] * ( Z;cx ) (prelly, p2uLly, ), (12)
where p1; and po; denote the dynamic equicorrelation parameters in the diagonal
blocks, Zn is the N-dimensional identity matrix, Ly is a N x 1 vector of ones, and
N1 and Ny are the number of assets in each block with N7 + No = N. Note that
our setup allows for a direct relation between p;; and p2; and the dynamic cross-
equicorrelation parameter in the off-diagonal blocks. The same process was considered
in Lucas, Schwaab, and Zhang (2017). R; is a positive definite correlation matrix if
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Table 1. Mean absolute error and mean squared error of the correlation estimates obtained using the VICC,
DCC, EWMA, GO-GARCH and HS method for the constant, sine, fast sine, step, ramp, DCC and DBEKK

correlation processes.

VICC DCC EWMA GO-GARCH HS
Mean absolute error
constant 0.0060 0.0059 0.0276 0.0206 0.0701
(0.0001)  (<0.0001)  (0.0002) (0.0002)  (0.0008)
sine 0.1312 0.1390 0.1501 0.1688 0.1623
(0.0008)  (0.0009)  (0.0011) (0.0013)  (0.0010)
fast sine 0.2267 0.2266 0.2603 0.2449 0.2370
(0.0003)  (0.0003)  (0.0004) (0.0004)  (0.0004)
step 0.0665 0.0712 0.0791 0.0999 0.1248
(0.0011)  (0.0013)  (0.0014) (0.0013)  (0.0016)
ramp 0.1504 0.1569 0.1551 0.1777 0.1785
(0.0012) (0.0011) (0.0011) (0.0015) (0.0010)
DCC 0.0479 0.0324 0.0741 0.0852 0.0806
(0.0004) (0.0004) (0.0006) (0.0007) (0.0008)
DBEKK 0.0807 0.0819 0.1049 0.0987 0.0821
(0.0004) (0.0004) (0.0008) (0.0006) (0.0004)
Mean squared error
constant 0.0001 0.0001 0.0013 0.0006 0.0076
(<0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0003)
sine 0.0264 0.0306 0.0347 0.0428 0.0402
(0.0003) (0.0004) (0.0005) (0.0006) (0.0006)
fast sine 0.0669 0.0679 0.0926 0.0795 0.0782
(0.0002) (0.0002) (0.0004) (0.0002) (0.0004)
step 0.0093 0.0112 0.0137 0.0172 0.0249
(0.0003)  (0.0003)  (0.0004) (0.0004)  (0.0008)
ramp 0.0402 0.0439 0.0473 0.0512 0.0520
(0.0006) (0.0006) (0.0007) (0.0008) (0.0010)
DCC 0.0037 0.0019 0.0089 0.0120 0.0109
(<0.0001) (<0.0001) (0.0002) (0.0002) (0.0004)
DBEKK 0.0106 0.0109 0.0181 0.0160 0.0119
(<0.0001) (<0.0001) (0.0003) (0.0002) (0.0001)

Note: This table presents the mean absolute error and mean squared error for each of the seven considered

correlation processes and for each considered correlation estimator. Between parentheses are the Heteroskedas-

ticity and Autocorrelation Consistent (HAC) standard errors. For each correlation process, the result of the

best performing estimator is put in bold.
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and only if p;; € (0,1) for i = 1,2. We set both p;; and pa; according to one of the
seven bivariate correlation processes which we have defined in Section 3.2 (the i.e.
constant p;; = 0.9) and consider all 28 possible combinations for a 10 x 10 correlation
matrix with Ny = Ny = 5.

We use the VICC, DCC, EWMA and GO-GARCH method to estimate the 10 x 10
two-block DECO correlation matrix and show the resulting MAE and MSE for the
lower diagonal elements in Table 2 and 3, respectively.! The MAE of the VICC ranges
in between 0.0108 for the constant-constant correlation process, and 0.1894 for the
combination between between the ramp and fast sine correlation processes.

For all the cross combinations between the considered correlation processes (i.e.
the constant-sine correlation process), the VICC outperforms all the other benchmark
models. The MAE indicates that the outperformance in the multivariate simulation is
more substantial compared to the bivariate simulation setup. For example, the MAE
difference between the VICC and DCC for the cross combination between the constant
and sine correlation processes is equal to 0.04. When the same correlation processes
are combined in the two-block DECO correlation matrix (i.e. the constant-constant
correlation process), the DCC method outperforms the VICC method twice, although
not substantially, and the GO-GARCH method outperforms the VICC three times.
Overall, the EWMA seems to be the worst performing model in the multivariate
simulation setup. The bottom line is that in most cases the VICC outperforms all the
other benchmark models and that the outperformance becomes more substantial in
higher dimensional correlation matrices.

1We omit the results of the HS method as the use of an improper pairwise correlation estimator causes
some severe outliers in the HS estimates of the 10 x 10 two-block DECO correlation matrix (i.e. [pHS| > 1).
After truncation of the correlations at 1 or -1 as appropriate, we try two methods to obtain a positive-definite
correlation matrix, namely via our proposed regularization method, and via a brute force method which extracts
the negative eigenvalues via an eigendecomposition and sets these equal to a small positive number (i.e. 1071)
before reconstructing the correlation matrix. While these methods improve the results, they remain drastically
worse compared to all the other models. In practice, additional truncations are needed, but this is beyond the
scope of our paper. The results with and without truncation are available from the authors upon request.
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Table 2. Mean absolute error for the the lower diagonal elements of the simulated 10 x 10 two-block DECO
correlation matrix using the VICC, DCC, EWMA and GO-GARCH method.

P2t
P1,t

VIiCcC constant
sine
fast sine
step
ramp
DCC
DBEKK

DCC constant
sine
fast sine
step
ramp
DCC
DBEKK

EWMA constant
sine
fast sine
step
ramp
DCC
DBEKK

GO-GARCH constant
sine
fast sine
step
ramp
DCC
DBEKK

constant

0.0108
0.1113
0.1760
0.0615
0.1235
0.0658
0.0777

0.0086
0.1522
0.1848
0.0760
0.1574
0.0667
0.0805

0.0487
0.1276
0.2039
0.0831
0.1344
0.1103
0.1124

0.0310
0.1382
0.1848
0.0996
0.1453
0.0775
0.0893

sine

0.1546
0.1832
0.1250
0.1663
0.1191
0.1287

0.1921
0.2016
0.1476
0.1838
0.1319
0.1426

0.1646
0.2009
0.1383
0.1742
0.1466
0.1498

0.1344
0.1919
0.1561
0.1666
0.1308
0.1427

fast sine step ramp DCC DBEKK

0.2452

0.1728 0.0877

0.1894 0.1329 0.1732

0.1483 0.0915 0.1245 0.0767

0.1617 0.0994 0.1361 0.0861 0.0972

0.2546

0.1861 0.1011

0.2043 0.1524 0.2061

0.1501  0.0977 0.1348 0.0761

0.1644 0.1057 0.1472 0.0865 0.0990

0.2693

0.1934  0.1006

0.2075 0.1438 0.1761

0.1877 0.1254 0.1515 0.1371

0.1945 0.1279 0.1556 0.1392  0.1417

0.2394

0.1911  0.0965

0.1946  0.1580 0.1509

0.1519 0.1114 0.1332 0.0830

0.1663 0.1223 0.1454 0.0933  0.1045

Note: This table presents the mean absolute error for the the lower diagonal elements of the simulated 10 x
10 two-block DECO correlation matrix using the VICC, DCC, EWMA and GO-GARCH method. The 28

considered correlation processes are combinations of the constant, sine, fast sine, step, ramp, DCC and DBEKK

correlation processes described in Section 3.2. For each correlation process, the result of the best performing

estimator is put in bold.
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Table 3. Mean squared error for the the lower diagonal elements of the simulated 10 x 10 two-block DECO
correlation matrix using the VICC, DCC, EWMA and GO-GARCH method.

P2t
P1,t

VIiCcC constant
sine
fast sine
step
ramp
DCC
DBEKK

DCC constant
sine
fast sine
step
ramp
DCC
DBEKK

EWMA constant
sine
fast sine
step
ramp
DCC
DBEKK

GO-GARCH constant
sine
fast sine
step
ramp
DCC
DBEKK

constant

0.0002
0.0223
0.0498
0.0087
0.0312
0.0082
0.0117

0.0001
0.0364
0.0536
0.0122
0.0435
0.0085
0.0126

0.0040
0.0282
0.0682
0.0138
0.0373
0.0212
0.0223

0.0015
0.0308
0.0533
0.0157
0.0369
0.0106
0.0143

sine

0.0344
0.0485
0.0250
0.0419
0.0212
0.0243

0.0485
0.0564
0.0320
0.0500
0.0264
0.0297

0.0412
0.0621
0.0314
0.0496
0.0334
0.0345

0.0276
0.0540
0.0365
0.0435
0.0265
0.0307

fast sine

0.0767
0.0468
0.0522
0.0333
0.0381

0.0807
0.0512
0.0594
0.0340
0.0391

0.1018
0.0604
0.0670
0.0552
0.0586

0.0757
0.0530
0.0562
0.0355
0.0411

step

0.0156
0.0304
0.0136
0.0161

0.0198
0.0375
0.0156
0.0180

0.0201
0.0377
0.0259
0.0271

0.0159
0.0392
0.0190
0.0226

ramp DCC DBEKK

0.0468
0.0249 0.0093
0.0290 0.0117 0.0148

0.0608
0.0297 0.0091
0.0338 0.0118  0.0153

0.0539
0.0379 0.0295
0.0401 0.0304 0.0316

0.0380
0.0289 0.0109
0.0334 0.0138 0.0172

Note: This table presents the mean squared error for the the lower diagonal elements of the simulated 10x 10 two-
block DECO correlation matrix using the VICC, DCC, EWMA and GO-GARCH method. The 28 considered

correlation processes are combinations of the constant, sine, fast sine, step, ramp, DCC and DBEKK correlation

processes described in Section 3.2. For each correlation process, the result of the best performing estimator is

put in bold.
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4. Application

The prediction of conditional correlations is of great practical importance in a lot of
financial applications, such as portfolio optimization, hedging and risk management.
In this section, we examine whether the VICC can be a useful tool in the estimation of
conditional hedge ratios. We first introduce the concept of futures cross hedging. Next,
we present the data. Then, we explain how the cross hedging performance of the various
hedge ratios can be measured and finally we show the bivariate and multivariate cross
hedging results.

4.1. Cross hedging

Futures cross hedging is a hedging strategy where futures contracts of a (correlated)
asset that differs from the underlying asset are used.? Often, an investor cross hedges
when he wants to avoid a certain type of exposure in his portfolio. More specifically, we
consider three cross hedging applications where the investor seeks to protect his S&P
500 index portfolio value against changes in (either) the interest rate, the exchange
rate between the US Dollar and the Euro, or the VIX index. He aims to achieve this
by cross hedging his fixed long spot position in the S&P 500 index using the CBOT
10-y US T-Note (TY), the CME Euro FX (EC) and the CBOE VIX (VX) futures,
respectively. We consider bivariate as well as multivariate cross hedging. In the former
the investor only wants to eliminate one type of exposure, while in the latter all three
types of exposure are eliminated simultaneously. In a similar way as in Wang, Wu,
and Yang (2015), we assume that the investor rebalances his hedging position at the
close of each trading week.

Let us consider an investor with a one-period hedging horizon who wants to hedge
a fixed long spot position with a one period return r,; by taking a position in N
(correlated) futures contracts with ry; representing the vector of one period futures
returns. To simplify the notation we assume that the investor has a long spot position
of one unit. The hedged portfolio return r,; is:

Tpt = Tst — DiTr, (13)

where b; denotes a vector containing the futures positions’ units. We follow Kroner
and Sultan (1993), among others, by determining the optimal values for the single-
period hedge ratios b; as those that minimize the conditional variance of the hedged
portfolio return.? This leads to the following optimization problem:

argmin  Var (rp| Fi—1) (14)

b,

where Var (-|F;—1) denotes the conditional variance operator with F;_; being the avail-

2 Another typical application is direct hedging, which is a hedging strategy in which the futures contract
is based on the same underlying as the spot position. We do not consider this type of hedging in this paper
since Wang, Wu, and Yang (2015) find that, due to model misspecification and estimation errors, an estimated
direct hedge ratio often does not lead to substantial gains with respect to a naive hedging strategy of using a
unit hedge ratio.

30ptimal hedge ratios can also be studied under the expected-utility maximization paradigm. In this
regard, note that in the application a weekly hedging horizon is used and for such short horizon the expected
return contribution to the mean-variance utility function is negligible with respect to the magnitude of the
portfolio variance. The optimal hedge ratio obtained under the expected-utility maximization paradigm is then
similar to the one obtained under the minimum variance criterion (see e.g., Chen, Lee, and Shrestha (2003)).
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able information set up until time ¢ — 1. It follows from the first-order condition that:

b —Hj} H,y,. (15)
where b} is a vector containing the optimal hedge ratios at time ¢ conditional on the
available information at time ¢ — 1, Hy; is the conditional covariance matrix of the
futures returns, and Hy; is a vector containing the conditional covariances between
the spot returns and each of the futures returns. In the simple case of bivariate cross
hedging where NV = 1, the optimal hedge ratio is equal to the ratio of the conditional
covariance between spot and futures returns to the conditional variance of futures
returns.

We propose to estimate the hedge ratios in Equation (15) by using the VICC co-
variance matrix filter as defined in Equation (8). We compare its performance with an
unconditional hedge ratio, which is the slope of the Ordinary Least Squares (OLS) re-
gression of spot returns on futures returns (see e.g., Kavussanos and Visvikis (2008)).
The DCC, EWMA, GO-GARCH and HS method are the additional conditional bench-

mark estimators.

4.2. Data

The dataset contains daily prices on the S&P 500 index, the CBOT 10-y US T-Note
(TY), the CME Euro FX (EC), and the CBOE VIX (VX) futures from January 1,
2008 until December 31, 2018. We use Friday closing prices to compute weekly simple
percentage returns. If Friday is a holiday, Thursday closing prices are used. We use the
nearest futures contract to delivery and roll over to the next nearest contract when
the current contract reaches the first day of the delivery month or its expiry date to
avoid thin trading and expiration effects (see e.g., Lypny and Powalla (1998)). The
spot data is obtained via Wharton Research Data Services (WRDS) and the futures
data via Quandl (Stevens Continuous Futures).

Table 4 shows the sample means and standard deviations (in %) of the weekly
spot and futures returns on the S&P 500 index, and the CBOT 10-y US T-Note,
the CME Euro FX and the CBOE VIX futures from January 2008 until December
2018. We further report the relative volatilities and the sample correlation coefficients
between the corresponding spot and futures returns, and the unconditional bivariate
OLS hedge ratios. Besides the full-sample summary statistics, we also provide sub-
sample summary statistics by dividing the sample into five sub-samples.

The sub-sample summary statistics from 2008-2010 show the substantial impact of
the Financial Crisis of 2008 on the hedge ratio dynamics as the high volatility on the
S&P 500 index leads to the highest relative volatility between spot and futures returns
for the Euro FX and VIX futures, and for the second highest relative volatility between
spot and futures returns for the 10-y US T-Note futures, compared to the other sub-
samples. This means that, at constant correlation, the value of the unconditional
hedge ratio should be decreasing in the consecutive sub-samples. However, this is
often not the case, as the effect of the decreasing relative volatility is partially offset
by an increase in the absolute value of the correlation. Furthermore, the time-varying
correlation also has a notable impact on the hedge ratio of the Euro FX futures, where
the sign of the correlation even changes from positive to negative, and back to positive
in the last few years of the sample. These sub-sample summary statistics show the need
for a time-varying hedge ratio and the potential benefits in using separate equations for
estimating the conditional variances and correlations as they show different time-series
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Table 4. Full-sample and sub-sample summary statistics of the weekly spot and futures returns over the
period January 1, 2008 until December 31, 2018.

i Viohhy by b a0 VioJhhy By B

2008-2018 2013-2014
S&P 500 0.13  2.52 0.34 1.43
CBOT 10-y US T-Note 0.01 0.84 3.01 -0.35 -1.04 -0.03 0.74 1.92 -0.22 -0.43
CME Euro FX 0.03 1.38 1.82 024 043 -0.07 0.92 155 -0.10 -0.15
CBOE VIX 040 9.08 028 -0.67 -0.18 033 7.24 020 -0.80 -0.16
2008-2010 2015-2016
S&P 500 -0.01 3.68 0.10 1.80
CBOT 10-y US T-Note 0.04 1.12 329 -0.31 -1.01 -0.02 0.77 235 -0.31 -0.73
CME Euro FX 0.05 1.74 211 036 0.75 -0.11 1.46 1.23 -0.16 -0.20
CBOE VIX 023 9.07 041 -062 -0.25 026 956 0.19 -0.80 -0.15
2011-2012 2017-2018
S&P 500 0.14 241 0.10 1.8
CBOT 10-y US T-Note  0.09 0.78 3.1 -0.63 -1.97 -0.02 049 3.85 -0.26 -1.02
CME Euro FX 0.03 143 1.68 049 082 009 091 207 005 0.10
CBOE VIX 0.37 10.51 023 -0.74 -0.17 0.89 880 021 -0.73 -0.16

Note: This table presents the sample means (&) and standard deviations (\/ﬁ) of the weekly returns (in %)
of the S&P 500 index, and of the CBOT 10-y US T-Note, CME Euro FX and CBOE VIX futures over the
period January 1, 2008 until December 31, 2018. The relative volatility (\/ﬁs/ﬁf) and the sample correlation
coefficients (pss) between the corresponding spot and futures returns, and the unconditional bivariate OLS

hedge ratios (b) are also reported.
behaviour.

4.3. Performance measures

We estimate weekly out-of-sample hedge ratios using the VICC, DCC, EWMA, GO-
GARCH, HS and OLS method on a rolling estimation window for cross hedging the
S&P 500 index using the CBOT 10-y US T-Note, the CME Euro FX and the CBOE
VIX futures from January 2008 until December 2018. In a similar way as in Wang, Wu,
and Yang (2015), we split our sample into two subsamples, namely an estimation win-
dow and an evaluation window, by splitting it in half. We use the estimation window
to compute the one-step-ahead weekly forecasts of the OHR and the corresponding
out-of-sample hedged portfolio returns for all the considered models. Then we rees-
timate the model parameters each time by rolling the estimation window one week
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forward and dropping the first observation.* Finally, we evaluate the models’ cross
hedging effectiveness by comparing the out-of-sample variance reduction, the achieved
decorrelation and the stability of the hedge ratio.

We quantify the first measure of hedging effectiveness with the Variance Reduc-
tion Ratio (VRR) which compares the variance of the out-of-sample hedged portfolio
returns to the variance of the unhedged portfolio returns as follows:

hs —h
VRR = 100 <A”> : (16)

s

where /ﬁp and ES are the sample variances of the weekly hedged and unhedged portfolio
returns, respectively. Following Wang, Wu, and Yang (2015), we use the Diebold-
Mariano test (DM-test) to account for the estimation uncertainty when evaluating
the difference in out-of-sample performance (Diebold and Mariano 2002). We compare
the cross hedging performance of the best performing hedge ratio with each of the
competing hedge ratios. We use the squared weekly out-of-sample returns and a Null
hypothesis of equal or worse performance by the best performing hedge ratio. We refer
to the original paper of Diebold and Mariano (2002) for a more detailed discussion.

The second measure of hedging effectiveness is the achieved decorrelation between
the out-of-sample hedged portfolio returns and the corresponding futures returns. If a
hedge ratio is effective, then the resulting hedged portfolio returns should be uncor-
related with the futures returns. We compute the correlation coefficient between the
out-of-sample hedged portfolio returns and the futures returns, and test whether it is
significant with a Null hypothesis of no correlation.

A last performance measure is the stability of the hedge ratio. A timely hedge
ratio should immediately react to changes in the underlying correlation, and relative
volatility, between spot and futures returns. However, if two separate hedge ratios lead
to an equal performance in terms of variance reduction and achieved decorrelation, the
more stable hedge ratio is preferred as it generates less transaction costs. We define
a more stable hedge ratio, as a hedge ratio that generates a lower portfolio turnover.
We define the portfolio turnover over the sample with T observations as follows:

T
1 o~
Turnover = 100 T—1 Z |br — bi—1], (17)

-1
t=2

where ?)\t denotes an estimated hedge ratio. In the case of multiple hedge ratios, we
average over all the resulting turnovers.

4.4. Bivariate results

Let us first consider the actual time series of estimated bivariate hedge ratios for the
various methods. We show these in Figure 2. We observe clear differences in time series
properties. The most stable estimate is obtained by the OLS hedge ratio. The other
methods are more reactive to recent data. The VICC and DCC hedge ratio show a
large degree of co-movement, while the HS method yields the most volatile predictions

4We also considered an expanding estimation window but found that, for all methods considered, a rolling
estimation window tend to lead to a better hedging performance. The expanding estimation window results
are available from the authors upon request.
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of the optimal hedge ratio. Despite the similar dynamics, the GO-GARCH and EWMA
hedge ratio are easy to distinguish from both the VICC and DCC hedge ratio.

In Figure 3, we plot the correlation prediction that is associated with each of the
hedge ratios. Note that the correlation and hedge ratio have of course the same sign.
They differ by the scaling factor, which is equal to the ratio of the underlying relative
volatility between spot and futures returns. The VICC, DCC, EWMA, GO-GARCH
and OLS yield by construction conditional correlation estimates that are in between -1
and 1. In contrast, we observe that the HS correlation effectively violates this condition
and is sometimes truncated at -1 or 1 as appropriate. Its interpretation is therefore
problematic.

Table 5 shows the VRR, the correlation between the out-of-sample hedged portfolio
returns and the futures returns, and the turnover of the VICC, DCC, EWMA, GO-
GARCH, HS and OLS hedge ratios for the bivariate cross hedging applications. We
observe that the VICC hedge ratio is the top performer in terms of variance reduction
for the 10-y US T-Note and Euro FX futures cross hedging applications with a VRR
of 9.34 and 0.47 percentage points, respectively. It is also the second best performing
hedge ratio for the VIX futures where the DCC hedge ratio reduces the most portfolio
return variance with a VRR of 65.18 percentage points. The DM-test indicates that
the VRR of the VICC and DCC hedge ratios are only significantly different in the Euro
FX futures cross hedging application in favor of the VICC. The HS and OLS hedge
ratios are significantly outperformed by either the VICC or the DCC hedge ratio in all
three applications, while the EWMA hedge ratio is significantly outperformed twice.
The GO-GARCH hedge ratio performs quite well in the 10-y US T-Note and VIX
applications, but performs drastically worse for the Euro FX. Besides the statistical
significance, the VRR numbers indicate that there are some substantial economic gains
in using the VICC. For example, for the Euro FX futures, the VICC hedge ratio has a
VRR that is 3.75, 1.42, 12.75, 6.42 and 12.83 percentage points larger than the VRR
of the DCC, EWMA, GO-GARCH, HS and OLS hedge ratio, respectively.

The correlation coefficients of the out-of-sample hedged portfolio returns with the
futures returns indicate that all the hedge ratios, except for the GO-GARCH and OLS
hedge ratios, lead to hedged portfolio returns that are not significantly correlated with
the futures returns for each cross hedging application. This means that the hedge
ratios succeed in eliminating the exposure to the interest rate, the exchange rate
between the US Dollar and the Euro, and the VIX. The GO-GARCH hedge ratio
fails to eliminate the exchange rate exposure, as the hedged portfolio returns are still
significantly correlated with the FEuro FX futures returns, and the OLS hedge ratio
only manages to eliminate interest rate exposure.

Consistent with the stable time series line of the OLS hedge ratio in Figure 2, we
find that the portfolio turnover indicates that the OLS hedge ratio is always by far the
most stable hedge ratio. However, as the VRR and achieved decorrelation indicate, this
stability comes at a cost of a less (or even a non-)effective hedging strategy. One should
evaluate whether the higher hedging effectiveness is worth the extra turnover that the
conditional models generate for each particular case. The EWMA hedge ratio is on
average the second most stable hedge ratio but again at the cost of a less effective
hedging strategy, while the VICC hedge ratio comes third as a substantially more
stable hedge ratio, on average, compared to the DCC and GO-GARCH hedge ratio
(e.g., about a 4.83 and 2.04 percentage points lower turnover for the 10-y US T-Note,
respectively). Lastly, the HS method does not only seem to lead to a poor performance
in terms of variance reduction, but also to an unstable hedge ratio.

Overall, we find that, in terms of variance reduction, the VICC hedge ratio signif-
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Figure 2. Out-of-sample estimates of the VICC, DCC, EWMA, GO-GARCH, HS and OLS bivariate hedge
ratios for the S&P 500 index using either the 10-y US T-Note, Euro FX and VIX futures as cross hedging asset.

.
o
o4
b
vy
61 — e |
DCC n
GO-GARCH i
————— Hs H
B T EWMA :
--- os '
T T T T T T
2014 2015 2016 2017 2018 2019
(a) 10-y US T-Note.
3
>
14
A
bt
04
-1 -
-2 -
T T T T T T
2014 2015 2016 2017 2018 2019
(b) Euro FX.
0.0
-0.1 o
A
b _go
-0.3 -

2014 2015 2016 2017 2018 2019

(c) VIX.

20



Figure 3. Out-of-sample estimates of the correlation between the weekly S&P 500 index return and the
returns on the 10-y US T-Note, Euro FX and VIX futures obtained via the VICC, DCC, EWMA, GO-GARCH,
HS and OLS models.
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Table 5. Bivariate hedging performance of the VICC, DCC, EWMA, GO-GARCH, HS and OLS hedge ratio
for cross hedging the S&P 500 index using the 10-y US T-Note, Euro FX and VIX futures.

VICC DCC EWMA GO GARCH HS OLS
10-y US T-Note
VRR 9.34 8.71 4.69** 8.72 3.20* 4.38*
ﬁrp,lo-y US T-Note 0.02 -0.01 0.02 0.09 0.07 0.13**
Turnover 11.60 16.43 9.58 13.64 35.36 1.13
Euro FX
VRR 0.47 -2.81* -0.95 -12.28*** -5.95*  -12.36***
ﬁerum FX -0.04 -0.07 -0.03 -0.17%** -0.08 -0.29***
Turnover 8.58 13.13 5.61 10.03 22.01 0.75
VIX
VRR 64.60 65.18 62.48* 63.82 63.52* 60.34**
ﬁr,],VIX -0.04 -0.04 -0.09 -0.03 -0.03 0.03
Turnover 1.25 1.31 0.49 0.79 1.47 0.07

Note: This table shows the VRR, correlation between the out-of-sample hedged portfolio returns and the
futures returns, and portfolio turnover of the VICC, DCC, EWMA, GO-GARCH, HS and OLS hedge ratio
for bivariate cross hedging the S&P 500 index using the CBOT 10-y US T-Note, the CME Euro FX and the
CBOE VIX futures. The VRR is defined in Equation (16) and the portfolio turnover is defined in Equation
(17). Numbers in bold indicate that it is the highest VRR in the set. The DM-test is used to determine whether
the outperformance in VRR is significant with a Null hypothesis of equal or worse performance by the best
performing hedge ratio, and the significance of the correlation is tested with a Null hypothesis of no correlation.

* okok

The significance at the 10%, 5%, and 1% levels are denoted as ™, **, and ™", respectively.

icantly outperforms all the competing models in at least one of the three bivariate
cross hedging applications. Importantly, these benefits are not eliminated by a large
turnover as the VICC has a lower turnover, on average, compared with the second
and third best model, namely the DCC and GO-GARCH hedge ratios. This makes
the VICC more appealing to use in practice. A last important finding is that the use of
the unconditional OLS hedge ratio significantly underperforms in all the applications
and fails to eliminate the exposure to the interest rate and the exchange rate be-
tween the US Dollar and the Euro. This finding stresses the importance of conditional
hedging.

4.5. Multivariate results

Table 6 shows the VRR, the correlation between the out-of-sample hedged portfo-
lio returns and the futures returns, and the turnover of the VICC, DCC, EWMA,
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Table 6. Multivariate hedging performance of the VICC, DCC, EWMA, GO-GARCH and OLS hedge ratio
for cross hedging the S&P 500 index using the 10-y US T-Note, Euro FX and VIX futures.

VICC DCC EWMA GO GARCH OLS

VRR 65.30 62.05*  62.31* 39.37** 60.87*
Proi0y US TNote 002 -0.03 0.03 0.01 0.05
Bry Euro FX 0.04  0.06 0.00 -0.06 -0.16"**
Pr, VIX 0.03  -0.04  -0.10* -0.04 -0.07
Turnover 621 7.0 2.97 14.18 0.45

Note: This table shows the VRR, correlation between the out-of-sample hedged portfolio returns and the
futures returns, and portfolio turnover of the VICC, DCC, EWMA, GO-GARCH and OLS hedge ratio for
bivariate cross hedging the S&P 500 index using the CBOT 10-y US T-Note, the CME Euro FX and the
CBOE VIX futures. The VRR is defined in Equation (16) and the portfolio turnover is defined in Equation
(17). Numbers in bold indicate that it is the highest VRR in the set. The DM-test is used to determine whether
the outperformance in VRR is significant with a Null hypothesis of equal or worse performance by the best
performing hedge ratio, and the significance of the correlation is tested with a Null hypothesis of no correlation.

The significance at the 10%, 5%, and 1% levels are denoted as ™, ™™, and ™", respectively.

GO-GARCH and OLS hedge ratios for the multivariate cross hedging application.® In
terms of VRR, we find that the VICC hedge ratio is the top performer with a VRR of
65.30 percentage points, and that it significantly outperforms all of the other consid-
ered models. The economic gains vary between 3 to 5 percentage points compared to
the DCC, EWMA and OLS hedge ratios. Surprisingly, the GO-GARCH hedge ratio
performs drastically worse with a VRR of only 39.37 percentage points.

The correlation coefficients of the out-of-sample hedged portfolio returns with the
futures returns indicate that the VICC, DCC and GO-GARCH hedge ratio succeed
in simultaneously eliminating the interest rate, the exchange rate between the US
Dollar and the Euro, and the VIX index exposure from the S&P 500 portfolio. The
EWMA hedge ratio fails to do so for the VIX exposure with a significant correlation
of -0.10, and the unconditional OLS hedge ratio for the exchange rate exposure with
a significant correlation of -0.16. Again the OLS hedge ratio generates the lowest
turnover at a cost of a less (and even non-)effective hedging strategy, while the VICC
hedge ratio is considerably stabler than the DCC and GO-GARCH hedge ratio. Finally,
note that the regularization weight (x;) is never different from zero, meaning that the
resulting VICC matrix is always positive-definite by itself.

50btaining the multivariate hedge ratios requires the inverse of the 3 x 3 covariance matrix of the futures
returns (Hyy ;). However, the use of an improper correlation estimator may cause some severe outliers in the
HS hedge ratios (i.e. \ﬁ?s\ > 1). After truncation of the correlations at 1 or -1 as appropriate, we try two
methods to obtain a positive-definite correlation matrix, namely via our proposed regularization method, and
via a brute force method which extracts the negative eigenvalues via an eigendecomposition and sets these equal
to a small positive number (i.e. 1071) before reconstructing the correlation matrix. While all these methods
lead to an invertible covariance matrix, the resulting multivariate hedge ratios often take extreme values. As
an example, for the 10-y US T-Note futures, the HS hedge ratio ranges between -16.23 and 21.07, while the
VICC hedge ratio ranges between -1.85 and 0.83. The multivariate HS hedge ratios are therefore not usable
in practice and lead to severe underperformance when cross hedging. In practice, additional truncations are
needed, but this is beyond the scope of our paper. The results with and without truncation are available from
the authors upon request.
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Overall, we find that, in terms of variance reduction, the VICC hedge ratio signifi-
cantly outperforms all the competing models in the multivariate hedging application,
and that the outperformance entails some substantial economic gains. Moreover, the
VICC succeeds in eliminating all the relevant exposures with a manageable turnover.
Again, we find that the unconditional OLS hedge ratio fails to eliminate the expo-
sure to the exchange rate between the US Dollar and the Euro, hence confirming the
importance of dynamic hedging.

5. Conclusion

Accurate estimates of the conditional correlations between asset returns are of great
practical importance in a lot of financial applications, such as portfolio optimization,
hedging and risk management. Traditionally, they are jointly estimated via MGARCH
models which require the optimization of a multivariate likelihood function. This can
be numerically challenging and can lead to parameter instability in the case of a general
parametrization. Moreover, most MGARCH models suffer from the so-called curse of
dimensionality.

To avoid these issues we present a computationally simple and flexible filter to
predict the time-varying correlation matrix of asset returns. The proposed Variance
Implied Conditional Correlation (VICC) filter exploits the polarization result that
links the correlation between two standardized variables with the variances of linear
combinations of their standardized values. By using flexible univariate GARCH models
the VICC only requires the estimation of univariate likelihood functions and the curse
of dimensionality is avoided.

We assess the reliability of the VICC estimates by performing a Monte Carlo study
and find that the VICC yields accurate correlation estimates for common choices of
correlation dynamics. We also study the cross hedging of the S&P 500 against changes
in (either) the interest rate, the exchange rate between the US Dollar and the Euro,
and the VIX. We conclude that the VICC either leads to a better, or to an equal,
hedging performance compared to standard benchmark models. Moreover, in case of
an equal performance it has the benefit of providing substantially more stable hedge
ratio estimates.

The proposed VICC is a flexible framework for dynamic correlation filtering. In
this paper, we have focussed on the implementation with a symmetric GARCH(1,1)
variance model in the VICC filter and the application to cross hedging. It would be
interesting to investigate the added value of asymmetric news impact surfaces when
using the VICC filter in practice and studying the usefulness in other applications,
such as high-dimensional dynamic portfolio allocation.
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Appendix A. Optimal v in the Gaussian case
Under the assumptions of Property 2, we have that Z; and Z; are bivariate standard
normally distributed with correlation coefficient p;;. We maximize estimation efficiency

by minimizing the scaled asymptotic variance of the sample variance of the weighted
sum between Z; and Z;. This leads to the following objective function:

Sy (7) = Avar (\/T —1 hisy (7)) , (A1)

where Avar () is the asymptotic variance operator and ﬁiﬂ(y) is the sample variance
estimator of the weighted sum of Z; and Z;. We now assume there are 1" observations
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of Z; and Z; collected in samples z; and z;. We then have:

T
P (v Z vaie + (1= )z — vz — (1 - 7)%)°
t=1

T 1
T T
=771 1;Z” T 1?_}"“
— — (A2)
;\Li EJ‘
T
+2v(1 -~ T 12 zig — %) (2 — %),
t=1

where z; and z; are the sample means, h; and h; are the sample variances, and h;; is
the sample covariance of z;; and z;;. Under the above assumptions we have that, for
T — oo:

Aﬁi -1 2 2p5 20
Cov | VT =1 | hyj — pij = 205 140} 20ij |, (A3)
hi—1 205 2pi5 2

see e.g., Equation (2.1) in Iwashita and Siotani (1994). We can then write Sy (v) as:

8v* (03 — 2pi5 + 1) — 169° (pi; — 2pij + 1) + 8% (p; — 3pij +2) + 87 (piy — 1) + 2.
(A4)
Its first and second order derivatives are:
S\ (v) =327 (03 — 2pij + 1) — 48y* (pi; — 2pij + 1) + 167 (p}; — 3pij +2) + 8 (pij — 1),
S (v) = 96* (p}; — 2pi + 1) — 967 (pj; — 2pij + 1) + 16 (p7; — 3pi +2) .

(A5)
From the first and second order conditions, it is trivial to see that v = 0.5 minimizes

St (y) for v € [0,1] and |p;j| < 1. The same holds for i j(7) for which the objective
function is:

S-(7) = Avar (VT =1 hi5()) (A6)

where ﬁi_j(v) is the sample variance estimator constructed using vz;1 — (1 —
V)%, 721 — (1 —7)z; . Its first and second order derivatives are:

S'(v) = 32" (p}; + 2pi; + 1) — 48y (p3; + 2pi; + 1) + 167 (p}; + 3ps; +2) — 8 (pi + 1),

S”(v) = 96+° (p; + 2pij + 1) — 967 (p3; + 2pij + 1) + 16 (p3; + 3pi; +2) .
(A7)

We find that v = 0.5 satisfies the first order conditions for a minimum.
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Appendix B. Univariate GARCH model

Denote the squared innovation in the return by E?t = (ri — ,ui,t)z, with p;; the pre-
dicted return, conditional on the information available at time ¢ — 1. The standard
GARCH(1,1) specification of Bollerslev (1986) models the conditional variance as a
linear combination of the lagged squared error term 522,t—1 and the lagged conditional
variance h;;—1. This leads to the following equation:

hip = wi + i 512,,:_1 + Bi hig—1. (B1)

The coefficients w;, o; and B; should all be positive to ensure a positive variance and
the sum of «; and B; should be lower than one for the conditional variance process
to be covariance stationary. The model is estimated via Gaussian (Quasi) Maximum
Likelihood estimation using the rugarch package of Ghalanos (2018). We refer to the
original paper of Bollerslev (1986) for a more detailed discussion.

Appendix C. Calibration of the regularization parameter k;

Given that f{:(ic is positive-definite, let G;_; be the square root of f{:iclc obtained
~ VICC

by using the Cholesky factorization such that R,_; = G;_1G]_;. We can rewrite
Equation (5) as follows:

~ VICC

Rt = (1 — Ht) ﬁt —+ Kt Gt—l Gg—lv

=Gy 1 [(1 — k) G Ry GT + ki IN} G] ;. (€D
Since G— is positive-definite, IA{ZICC is positive-definite if (1 — x;) G-, Ry G, +
k¢ In is positive-definite. We ensure this by setting #; such that the lowest eigenvalue
of (1—ky) G;_ll R; Grt__T1 + k¢ Iy equals a small positive number ;. This is the case
for the regularized VICC correlation matrix in Equation (6). To see this, note first
that the eigenvalues of (1 — k) G;_ll f{t Grt__T1 + k¢ Iy are linearly related to those of
Gt__l1 R, G, ", Recall that Amin ¢ is defined as the smallest eigenvalue of Gt__l1 R, i
and note that, if the vector of eigenvalues of Gt__l1 R, G, is A, then the eigenvalues
of (1 — k¢) Gt__l1 f{t G, | + Kkt Iy are (1 — k) A¢ + K¢ It then follows that:

(1 - ”t))‘min,t + K = ¢mina
(1 - )\min,t)"ft = ¢min - /\min,t7

o — max J Ymin = Amint
! 1_)\min7t ’ '

Appendix D. EWMA model

Let the N x 1 innovation vector in the returns r; be €, = r; — i, where i, is a N x 1
vector with the sample averages of the returns from inception till time ¢ — 1. The
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EWMA prediction is then as follows:
Ht = (1 — (S)Eteg + (5Ht_1, (Dl)

where H; is the conditional covariance matrix and § is the EWMA smoothing param-
eter. As usual (see e.g., Danielsson (2011) and Engle (2009)), we set 6 = 0.94 and
initialize the process with the unconditional sample covariance matrix. The EWMA
correlation matrix can then be easily obtained as follows:

R; = diag{dg(Ht)}_1/2 H; di@g{dQ(Ht)}_1/2: (D2)

where the matrix operator dg(-) returns a vector that contains the elements of the
main diagonal and diag{-} creates a diagonal matrix.

Appendix E. DCC model
Let ry be a N x 1 return vector with the following joint dynamics:
ry = p; + Dz, (E1)

where p, is a vector with the conditional means, D; is a diagonal matrix with the
conditional standard deviations of the returns on the main diagonal and z; is a vec-
tor with the standardized error terms. The conditional covariance matrix H; can be
expressed as:

H, = D;R,D;, (E2)

in which Ry is the conditional correlation matrix. The diagonal elements of D; are
obtained via the standard GARCH(1,1) model. The DCC model then specifies the
dynamics in Ry using the standardized values z as follows:

Q,=(1—w —wy) Q+w1 ztth +wy Q_q,

E3
R, = diag{dg(Q,)} '/ Q, diag{dg(Q,)} "%, "
where Q, is a symmetric positive definite matrix and @Q is the unconditional covariance
matrix of z;. The scalar parameters w; and wy are strictly positive and their sum is
strictly lower than one. The DCC model is estimated using the standard two-step
Gaussian (Quasi) Maximum Likelihood estimation as implemented in the rmgarch
package of Ghalanos (2016). We refer to the original paper of Engle (2002) for a more
detailed discussion.

Appendix F. GO-GARCH model

Following the GO-GARCH model of van der Weide (2002) the innovation vector € is
modelled as a linear combination of N unobserved factors f;:

€t = Aft, (Fl)
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where A is a time-invariant, invertible mixing matrix. The factors are specified as
follows:

f, = /v, (F2)

where Ei/ *is a diagonal matrix with the conditional variances of the factors, and
v; ¢ is an iid random variable with zero mean and unit variance. The variances of the
factors are in our case modelled via the standard GARCH(1,1) model. The conditional
covariance matrix H; is AX;AT. To estimate the GO-GARCH model we follow Broda

and Paolella (2009) and use the implementation in the rmgarch package of Ghalanos
(2016).

Appendix G. Harris and Shen (2003)

Harris and Shen (2003) propose to estimate the conditional covariance h;;; as follows:

> /H—&—,t - /]:L—,t
hifs = =" (G1)

where /H+7t is the estimated conditional variance of the sum of r; ; and r;; and ﬁ_ﬂg that
of the difference between them. Both are obtained by using the standard GARCH(1,1)
model. Note that the correlation embedded in the HS method is an unbounded function
of the conditional variance estimates h;; and h;; and may therefore be sensitive to

extreme observations in the data. This may even lead to |ﬁgst / \//i\zivt/ﬁj7t| > 1. We refer
to Harris and Shen (2003) for a more detailed discussion.
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