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Abstract. Most group fairness notions detect unethical biases by com-
puting statistical parity metrics on a model’s output. However, this
approach suffers from several shortcomings, such as philosophical dis-
agreement, mutual incompatibility, and lack of interpretability. These
shortcomings have spurred the research on complementary bias detection
methods that offer additional transparency into the sources of discrimi-
nation and are agnostic towards an a priori decision on the definition of
fairness and choice of protected features. A recent proposal in this direc-
tion is LUCID (Locating Unfairness through Canonical Inverse Design),
where canonical sets are generated by performing gradient descent on
the input space, revealing a model’s desired input given a preferred out-
put. This information about the model’s mechanisms, i.e., which feature
values are essential to obtain specific outputs, allows exposing poten-
tial unethical biases in its internal logic. Here, we present LUCID–GAN,
which generates canonical inputs via a conditional generative model in-
stead of gradient–based inverse design. LUCID–GAN has several bene-
fits, including that it applies to non–differentiable models, ensures that
canonical sets consist of realistic inputs, and allows to assess proxy and
intersectional discrimination. We empirically evaluate LUCID–GAN on
the UCI Adult and COMPAS data sets and show that it allows for de-
tecting unethical biases in black–box models without requiring access to
the training data.1

Keywords: algorithmic fairness · bias detection · discrimination ·
generative models.
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1 Code is available at https://github.com/Integrated-Intelligence-Lab/

canonical_sets.
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1 Introduction

The increasing use of Artificial Intelligence (AI) algorithms in (semi–)automated
decision–making processes has raised concerns about harmful and discriminatory
decision patterns observed in contexts such as healthcare [30,43], education [34],
and hiring [12,46]. In these cases, the algorithmic decisions discriminate against
people based on (legally) protected features, including gender, age, and ethnic-
ity [32]. Often, the very detection of discrimination is difficult because protected
characteristics are encoded in so–called proxies. Proxy discrimination is espe-
cially prevalent in the era of big data, where algorithms can reconstruct many
protected features from non–protected data [7]. In this paper, we address this
challenge by developing a fairness evaluation method that reveals an algorithm’s
desired feature values for a given outcome. Our method exposes proxies that
embed potential unethical biases and enhances transparency in the algorithm’s
decision–making process.

Algorithmic discrimination can be direct or indirect [6]. Indirect discrimina-
tion focuses on the impact of a given decision on a protected group. Within US
law, this is often labeled “disparate impact.” While algorithmic decision–making
tools have been shown to frequently put members of particular social groups at a
disadvantage [6], indirect discrimination can often be justified as being a propor-
tionate means of achieving a legitimate goal (e.g., in hiring decisions) [1]. Direct
discrimination, on the other hand, focuses not so much on the impacts but on
the reasons behind a given decision. In other words, a person not being hired
because of their belonging to a particular social group would constitute a case of
direct discrimination. While direct discrimination is illegal both under EU and
US law2, cases of direct discrimination often go unchallenged due to the diffi-
culty of establishing a causal link between protected characteristics and decision
outcomes. Within the context of algorithmic decision making, the direct discrim-
ination doctrine is often translated into the requirement to abstain from using
protected characteristics as input variables. In practice, however, such attempts
of “fairness–through–unawareness” rarely work since protected features are of-
ten encoded through other features, giving rise to potential proxy discrimination
[18].

Such proxy discrimination further exacerbates the challenge of establishing
potential causal links between protected characteristics and less favorable deci-
sion outcomes. The identification of proxies and their relationship to protected
characteristics is therefore crucial to identify cases of directly discriminating
algorithms [1].

While proxy discrimination plays an important role for direct discrimination,
it is more often considered in the context of indirect discrimination by algorithms
[6,50]. Indirect discrimination has a strong focus on the outcome of a given de-
cision (as opposed to the reason behind it) and so it more readily connects to

2 Anti-discrimination law in the US speaks of “disparate treatment” which, while sim-
ilar to direct discrimination, additionally requires there to be discriminatory intent
[45].
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the fairness literature’s large focus on algorithmic outputs. The traditional ap-
proach involves translating philosophical or political notions of group fairness
into a statistical parity metric on the model’s output [34].3 However, output–
based fairness evaluations of this kind have several shortcomings. First, many
notions of group fairness are incompatible, except for highly constrained special
cases [26]. Second, the problem of many fairness notions only worsens as there is
often substantial philosophical disagreement on which ones are genuinely fair in
each specific context [8]. Third, by reducing the evaluation to a single number,
output–based metrics make it hard to verify the validity of the results and to
understand exactly why the model is unfair [37]. Fourth, most output–based fair-
ness evaluations make it difficult to detect intersectional discrimination as they
are limited to a specific selection of protected features. This selection entails
the risk of missing discrimination against people at the intersection of differ-
ent protected features [11,27] or against groups that do not share a protected
feature [9]. Finally, the computation of these parity metrics often depends on a
benchmark data set that may be biased or unbalanced to some extent [42,33].
These shortcomings motivate the research on complementary fairness evaluation
methods, which offer additional transparency into the sources of discrimination
and are agnostic towards an a priori decision on the choice of protected features,
as this is often case-dependent and policy–related [20].

In this paper, we build on the LUCID (Locating Unfairness through Canon-
ical Inverse Design) method proposed by Mazijn et al. [36]. LUCID generates
canonical inputs by performing gradient descent on the input space, revealing
a trained model’s desired input given a preferred output. The resulting canoni-
cal set contains valuable information about the model’s mechanisms, i.e., which
feature values are essential to obtain specific outputs. This allows us to expose
potential unethical biases in its internal logic by inspecting the distribution of
the protected features. Despite LUCID’s appealing properties as a fairness eval-
uation method, the canonical sets generated by gradient–based inverse design
have some critical shortcomings. First, while the canonical sets in their current
form are specifically suitable for tabular data, they require differentiable models.
LUCID thereby omits the class of tree–based models, which are very effective for
tabular data [47]. Additionally, the current gradient–based approach may lead
to non–realistic canonical inputs, and it is not straightforward to assess proxy
or intersectional discrimination [14].

We present LUCID–GAN, which generates canonical inputs via a condi-
tional generative model instead of gradient–based inverse design. LUCID–GAN
generates canonical inputs conditional on the predictions of the model under fair-
ness evaluation (see Fig. 1a). Using a conditional generative model has two clear
benefits. First, we only require a set of (test) samples and corresponding pre-
dictions from the model under fairness evaluation, making it a model–agnostic
approach. Second, LUCID–GAN generates realistic samples as defined by its ob-

3 Note that we focus on notions of group fairness which are most commonly used
in practice, while many other definitions of fairness exist, including individual and
counterfactual fairness [16,28].
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jective function. Furthermore, the flexibility of LUCID–GAN is twofold. First, we
can extend the canonical inputs with protected features that are not part of the
input space of the model under fairness evaluation. Second, the categorical (one–
hot encoded) features are part of the conditional vector in the generator, and we
can thus condition the canonical inputs on specific feature values (e.g., setting
“Male” for “sex”). The first flexibility allows us to assess proxy discrimination,
and the second to explicitly check for sources of intersectional discrimination.

LUCID–GAN is an input–based fairness evaluation method which takes a
somewhat reverse approach to the statistical output–based metrics. Instead of
comparing the predictions, we compare the (protected) feature distributions cor-
responding to large positive and negative predictions. LUCID–GAN is agnostic
towards an a priori decision on the definition of fairness and choice of protected
features and instead provides results that suggest potential sources of discrimina-
tion [36]. One can then examine the resulting canonical sets from multiple points
of view, which are often case–dependent and policy–related [20]. By learning the
joint conditional distribution of the features on the model’s predictions, LUCID–
GAN generates a diverse set of realistic synthetic samples that get positive and
negative outputs. Instead of a single number and focusing on a select number of
protected features, we get an overview of the overall preferences of the model.
We can detect combinations of feature values that often appear together (e.g.,
“White,” “Male,” “Married,” and “Husband” in the UCI Adult data set), which
gives us insights into the different channels of potential proxy discrimination [1].

While LUCID–GAN and output–based metrics may sometimes convey the
same results, LUCID–GAN can shed light on the potential sources for the sta-
tistical disparities. This is crucial as enforcing statistical parity for the wrong
reasons can actually harm the protected groups [13]. LUCID–GAN reveals a
model’s preferences for a specific output. In contrast, output–based metrics show
the statistical disparities on a benchmark data set that may result from many
unknown causes. Overall, we argue that both techniques can be part of the same
toolbox as they yield different insights.

We provide a brief overview of the literature on algorithmic fairness, acti-
vation maximization, and generative models for tabular data in Section 2. In
Section 3, we present LUCID–GAN and discuss how it solves LUCID’s short-
comings. In Section 4, we show how to generate canonical sets via LUCID–GAN
for various fairness evaluations, including direct, proxy, and intersectional dis-
crimination, on the UCI Adult [15] and COMPAS [2] data sets. We find that
LUCID–GAN is a valuable addition to the toolbox of algorithmic fairness evalu-
ation, as it offers additional transparency into the sources of discrimination and
is agnostic towards an a priori decision on the definition of fairness and choice
of protected features.
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Fig. 1: The LUCID-GAN architecture. (a) High–level overview, (b) LUCID–GAN
training mechanism, and (c) the details of the Generator. The input sample may
consist of both numerical (N) and one–hot encoded (C) features, which may
contain protected features that are not necessarily in the input space of the
black–box model. The generator receives random noise, the black–box’s predic-
tions, and a masked version of C (C̃) where only one category of a single one–hot
encoded feature is still equal to one. The critic gets real samples from the data
and synthetic samples from the generator, where N∗ is generated via Tanh func-
tions and C∗ via Gumbel–Softmax functions. In addition, it also receives the
black–box’s predictions and C̃ to check the validity of the sample. The critic is
trained via the Wasserstein loss, while the generator also adds a reconstruction
loss on C∗ and C̃. Note that if the protected features are not part of the black–
box model’s input space, we can still assess proxy discrimination by generating
these features (as part of N∗ or C∗) and concatenating them to the real samples

(as part of N or C) given to the critic. We can use C̃ to assess cases of intersec-
tional discrimination by generating canonical inputs conditional on fixed values
for protected features, such as setting “Male” for “Sex.”
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2 Background and Related Work

The development of LUCID–GAN to expose unethical biases in a model’s inter-
nal logic connects ideas from the literature on algorithmic fairness, activation
maximization using generative models, and recent advancements in GANs (Gen-
erative Adversarial Networks) for tabular data. We discuss these different fields
below.

2.1 Algorithmic Fairness

The inherent ambiguity of viewing the concept of fairness spurred the devel-
opment of many fairness notions, with over 19 widely accepted definitions [34].
Most group fairness notions focus on the equality of outcome by computing sta-
tistical parity metrics on a model’s output. The two most prominent examples of
these statistical output–based metrics are Demographic Parity (DP) and Equal-
ity Of Opportunity (EOP) [6]. In DP, we compare the Positivity Rate (PR) of
the subpopulations under fairness evaluation, and in EOP, we compare the True
Positive Rate (TPR). The choice between DP and EOP entirely depends on the
underlying assumptions and worldview of the evaluator [19]. Indeed, even among
those two most widely used metrics, substantial philosophical disagreement ex-
ists on which one is genuinely fair in each specific context [8]. Moreover, they are
incompatible, except for highly constrained special cases [26], and it has been
empirically shown that inherent trade–offs exist in many practical situations [35].

In addition, these statistical output–based metrics may suffer from sampling
bias and variance as they depend on a benchmark data set [33]. By reducing
the fairness evaluation to a single number, it is hard to verify the validity of the
results and to understand exactly why the model is unfair. To enhance the trans-
parency of the statistical parity metrics, there is a strong interaction between
output–based fairness evaluations and interpretability methods [37]. However,
there are many trade–offs and the interpretability methods themselves may suf-
fer from unethical biases [5,25,49]. Finally, there is also the selection of protected
attributes, which may lead to missing cases of intersectional discrimination, also
known as fairness gerrymandering [24]. We argue that LUCID–GAN counters
many of these shortcomings by offering additional transparency into the sources
of discrimination and being agnostic towards an a priori decision on the definition
of fairness and choice of protected features.

2.2 Activation Maximization

Performing gradient descent on the input space generates canonical inputs that
maximize a specific output activation [48]. However, this gradient–based inverse
design approach often leads to unrealistic inputs that obtain a high–confidence
score on a specific class. These so–called fool inputs result from discriminative
models allocating large areas of high confidence, often much larger than the area
occupied by training samples for that class [41]. To avoid the generation of fool
inputs, Nguyen et al. [39,40] perform gradient descent in the latent space of a
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generator network to maximize the output activation in a separate discriminative
model. Finally, Odena et al. [44] and Zhou et al. [53] train an Auxiliary Classifier
GAN (AC–GAN) and Activation Maximization GAN (AM–GAN) to maximize
the activation of its label in an auxiliary classifier.

Two important distinctions exist with our application of LUCID–GAN on
fairness and tabular data. First, our goal is to generate realistic canonical inputs
for any black–box model’s predictions, not to stabilize the training of the GAN.
Moreover, note that the AC– and AM–GAN require access to a differentiable
model, which we avoid using a Conditional GAN (CGAN) [38]. Second, most
previous methods focus on images, where the resulting canonical inputs are
individually interpretable and difficult to aggregate [29]. In contrast, we infer
the overall fairness of a model from the feature distributions by generating a set
of canonical inputs.

2.3 Tabular GAN

The use of GANs (Generative Adversarial Networks) [21] for tabular data con-
cerns specific challenges, such as mixed data types, non–Gaussian and multi-
modal distributions, and sparse and highly imbalanced categorical features [10].
To deal with mixed data types, i.e., numerical and one–hot encoded features,
different types of output activation functions are used in the generator. For the
numerical features, the hyperbolic tangent function (Tanh) is combined with a
min–max normalization as a pre–processing step. However, this does not ad-
dress the non–Gaussian and multimodal distributions. Therefore, Xu et al. [51]
propose a Conditional Tabular GAN (CTGAN) with mode–specific (min–max)
normalization by using a variational Gaussian mixture model. For the categorical
features, the Gumbel–Softmax function is used to make the softmax operation
in the generator differentiable [23]. To handle the sparse and highly imbalanced
categorical features, Xu et al. [51] provide a conditional vector to the generator
in the form of a masked version of the one–hot encoded features where only
one category of a single one–hot encoded feature is still equal to one, and ap-
ply a reconstruction loss to the synthetic sample and the masked vector of the
selected one–hot encoded feature. They further propose a training–by–sampling
technique where the masked one–hot encoded feature is randomly sampled, and
its category is sampled from the empirical log–frequency distribution.

The masked vector can be used to control the generation process similarly to
the CGAN framework [38]. For example, [17] use the masked vector to oversam-
ple specific categories in an imbalanced learning problem. Zhao et al. [52] also
add the components of the variational Gaussian mixture model to the masked
vector to accommodate features with strict upper and lower bounds, e.g., an
income of exactly zero. We continue the work on CTGAN by extending the
conditional vector of the generator in LUCID–GAN with the black–box model’s
predictions, which are continuous values that are not part of the synthetic sam-
ple, and examining its interaction with the masked vector.
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3 LUCID–GAN

We present LUCID–GAN to expose unethical biases in a model’s internal logic
by generating canonical inputs. First, we discuss LUCID and the canonical sets
as proposed by Mazijn et al. [36]. Then, we introduce LUCID–GAN and show
how to generate canonical sets.

3.1 LUCID

Shortcomings in the existing output–based group fairness metrics have spurred
the research on complementary fairness evaluation methods, which offer addi-
tional transparency into the sources of discrimination and are agnostic towards
an a priori decision on the definition of fairness and choice of protected features,
as this is often case–dependent and policy–related [20]. In this spirit, Mazijn
et al. [36] propose LUCID, and introduce the notion of a canonical set that al-
lows to evaluate the fairness of a model’s decision-making processes. Through
gradient-based inverse design, LUCID generates canonical inputs, which can be
considered the desired input given a preferred output for a trained model. By
repeatedly generating canonical inputs, the resulting canonical set reveals which
feature values are essential to obtain specific outputs. This allows for exposing
potential unethical biases in the model’s internal logic by inspecting the distri-
bution of the protected features. In contrast to output metrics, there is no need
for a specific fairness metric, a ground truth, or a benchmark data set.

Following Mazijn et al. [36], we use LUCID to generate a canonical set for a
trained binary classifier.4 First, we draw an extensive set of randomly initialized
input samples from a uniform distribution. Then, we transform these random
input samples into canonical inputs through gradient–based inverse design. Each
subsequent transformation results from minimizing the (cross–entropy) loss be-
tween the model prediction and the preferred output (e.g., a loan is granted) until
the model’s prediction is close to its maximum (a predicted probability of 1 in
this case). Note that we keep the model parameters fixed throughout the entire
procedure. Finally, we inspect the distribution of each protected feature within
the canonical set and compare it to the initial random distribution. Several de-
sign considerations impact the resulting canonical set, such as the initialization,
choice of hyperparameters, and pre– and post–processing of categorical features.
Besides these practical considerations, LUCID has some critical shortcomings,
such as the requirement of differentiable models, unrealistic canonical inputs,
and difficulties in assessing proxy and intersectional discrimination, which we
solve by introducing LUCID–GAN.

4 We use the same implementation and default values for the hyperparameters as
LUCID. For more details see Mazijn et al. [36]. The code for LUCID is available at:
https://github.com/Integrated-Intelligence-Lab/canonical_sets.

https://github.com/Integrated-Intelligence-Lab/canonical_sets
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3.2 Specifications of LUCID–GAN

LUCID–GAN builds upon the CTGAN [51] framework. In the class of GANs, a
generative model is trained through an adversarial process with a critic model
(see Fig. 1a). The former aims to create synthetic samples from random noise
that fool the latter into judging them as real. Besides the random noise, we
provide a conditional vector to the generator, which allows us to control the
generation process to some extent [38]. The CTGAN uses a Wasserstein GAN
with gradient penalty (WGAN–GP) to prevent common problems in training
GAN models, such as mode–dropping, vanishing gradients, and non–convergence
[3,4,22]. Xu et al. [51] further propose stabilizing training by following PacGAN
[31] and packaging multiple samples together in the critic. Both the generator
and the critic consist of fully–connected hidden layers. In the generator, we use
batch normalization, ReLU functions, and residual connections on each hidden
layer. In the critic, we use leaky ReLU functions and dropout.5

3.3 Training LUCID–GAN

The generator in LUCID–GAN generates canonical inputs conditional on the
predictions of the black–box under fairness evaluation (see Fig. 1b). The black–
box’s input samples may consist of both numerical (N) and one–hot encoded (C)
features. Both N and C may contain protected features that are not necessarily
in the black–box’s input space for models which do not directly discriminate
against specific features. The numerical features N are pre–processed via mode–
specific min–max normalization using a variational Gaussian mixture model, and
the categorical features C are one–hot encoded. Note that the processing of the
samples for the training of the black–box model and LUCID–GAN does not need
to be similar. For example, many tree–based models do not require the one–hot
encoding of categorical features.

The generator receives noise which is drawn from a standard normal distri-
bution, and a conditional vector containing the black–box’s predictions and a
masked version of C (C̃) where only one category of a single one–hot encoded
feature is equal to one. The critic gets real samples from the data and synthetic
samples from the generator, where N∗ is generated via Tanh functions and C∗

via Gumbel–Softmax functions.6 In addition, it also receives the black–box’s
predictions and C̃ to check the validity of the sample.

We use C̃ to handle the sparse and highly imbalanced categorical features via
a training–by–sampling technique. It is constructed by randomly sampling a one–
hot encoded feature, and subsequently sampling a category from the empirical

5 We use the same implementation and default values for the hyperparameters as
CTGAN. For more details see Xu et al. [51]. The code for CTGAN is available at:
https://github.com/sdv-dev/CTGAN.

6 The generator also outputs the components of the variational Gaussian mixture
model for each numerical feature as a one–hot encoded vector. The components are
part of the input for the critic to address the non–Gaussian and multimodal distri-
butions. They are further used to reverse the mode–specific min–max normalization.

https://github.com/sdv-dev/CTGAN
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log–frequency distribution.7 All the others values are set to zero. To enforce
the generator to generate the sampled category in C̃, we apply a reconstruction
loss to C∗ and C̃. To ensure the validity of the conditional vector, we pick the
prediction corresponding to the sample from the empirical distribution. After
training, we can use C̃ to generate canonical inputs conditional on fixed values
for a single category, such as setting “Male” for “Sex.”

The critic is trained via the Wasserstein loss, while the generator also adds
the reconstruction loss. The reconstruction loss is the cross–entropy between the
sampled one–hot encoded feature and its synthetic counterpart in C∗. The cross–
entropy is only computed on a single one–hot encoded feature, which forces the
generator to replicate this condition in the synthetic sample.

3.4 Generating Canonical Sets with LUCID–GAN

After training, we use the generator of LUCID–GAN to generate canonical inputs
(see Fig. 1c). Similar to the CGAN framework [38], we can use the conditional
vector to control the generation process. Indeed, setting the prediction in the
conditional vector to a specific value corresponds to maximizing the output acti-
vation via gradient descent. For example, in the case of a binary classifier, we can
generate a canonical set that reveals the preferred output for receiving a “posi-
tive” and “negative” decision by setting the prediction in the conditional vector
equal to a predicted probability of 1 and 0, respectively. Instead of comparing
the predictions, we compare the (protected) feature distributions corresponding
to large positive and negative predictions.

Using a generative model has the benefits of working for any black–box model
and generating realistic synthetic samples. Note that if the protected features are
not part of the black–box model’s input space, we can still assess proxy discrim-
ination by generating these features (as part of N∗ or C∗) and concatenating

them to the real samples (as part of N or C) given to the critic. We use C̃ to as-
sess intersectional discrimination by generating canonical inputs conditional on
fixed values for protected features, such as setting “Male” for “Sex.” This allows
us to compare feature distributions for many possible scenarios where other-
wise, data would be scarce, and the estimates of output–based metrics would be
unreliable [33].

7 For example, let C1 = [a, b] and C2 = [c, d, e] be two one–hot encoded features with
a possible empirical sample C = [C1, C2] = [0, 1, 0, 0, 1], wherein the first one–hot
encoded feature we observe the second category b, and in the second one–hot encoded
feature the third category e. We construct a masked version of C by first randomly
selecting either C1 or C2, and then by sampling a category from their respective
empirical log–frequency distribution. A potentially masked version of C could be
C̃ = [1, 0, 0, 0, 0] where the first category a of the first one–hot encoded feature C1

is sampled.
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4 Experiments and Discussion

We show how to generate canonical sets via LUCID–GAN for various fairness
evaluations, including direct, proxy, and intersectional discrimination, on the
UCI Adult [15] and COMPAS [2] data sets. In the UCI Adult data set, we
predict if a person earns more or less than $50, 000 per year, with more being
the preferred output. For COMPAS, the task is to predict if a person will commit
recidivism in the next two years, with no recidivism being the preferred output
as the person can be released on bail. For both data sets, we consider “Race”
and “Sex” to be the (legally) protected features, and for UCI Adult we also
consider “Marital Status” and “Relationship.” The UCI Adult data set has a
fixed test set, while for the COMPAS data set, we sample 20% from the training
data as the test set. The samples and predictions of the test set are also used
to train LUCID–GAN and to compute the statistical output–based metrics DP
and EOP.

We compare LUCID–GAN with LUCID and the statistical output–based
metrics DP and EOP (by comparing the TP and TPR, respectively) for the
case of direct discrimination (see Fig. 2 and Table 1). We further demonstrate
how to apply LUCID–GAN to the cases of proxy (See Fig. 3) and intersectional
(see Fig. 4) discrimination. As LUCID only works for differentiable models and
DP and EOP are often used for binary classification tasks, we use binary fully-
connected neural network classifiers. For LUCID–GAN, the extension to other
black–box classifiers is trivial, as it only requires samples and their corresponding
predictions, making it a model–agnostic approach.

The classifiers consist of hidden layers with ReLU activation functions and
a softmax output layer with two output nodes. The number of hidden layers
and nodes is decided by the accuracy on a validation set (20% from the training
set) which is 83.9% for UCI Adult and 64.0% for COMPAS. This performance
is in line with the standard benchmarks. We choose this standard architecture
as the point of this experiment is not to achieve state–of–the–art performance
but to demonstrate the capabilities of LUCID–GAN, which does not depend on
the quality of the underlying model. Note that the computational complexity of
LUCID–GAN lies in the training of the generator and the critic, which for our
experiments was only a matter of minutes on a consumer CPU. After training,
the generation of canonical inputs for various fairness evaluations is done via
single forward passes through the generator.

4.1 Direct Discrimination

We compare LUCID–GAN with LUCID and the statistical output–based metrics
DP and EOP (by comparing the disparities between TP and TPR, respectively)
for the case of direct discrimination (see Fig. 2 and Table 1). After the classifiers
are trained, we train LUCID–GAN on the test set and then generate 1000 syn-
thetic samples for a positive and negative output (i.e., a predicted probability of
1 and 0, respectively). We refer to them as the positive and negative canonical
sets. Note that we require no access to the training data and treat the underlying
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classifier as a black–box. For LUCID, we also generate 1000 synthetic samples for
a positive output starting from an initial random uniform distribution (see also
Appendix A). Finally, we compute the TP and TPR of all the subpopulations
for the protected features. A disparity between these metrics indicates potential
discrimination towards the group with lower values.

We locate unfairness in the model’s decision–making process with LUCID–
GAN by comparing the feature distributions of the positive and negative canon-
ical sets. Only inspecting the feature distributions of either the positive or neg-
ative canonical set can lead to misleading results, as the generator is trained to
mimic the underlying distribution of its training samples. For example, in both
the UCI Adult and COMPAS data sets, more samples correspond to the “Male”
category than the “Female” category for the feature “Sex” which results in more
males in both the positive and negative canonical sets.

While the results in our experiments are quite clear on visual inspection and
the data sets are not high–dimensional, this may not always be the case, and
presenting the results as such can be unfeasible and ambiguous. In that case,
we suggest using distance metrics, such as the Wasserstein or Jensen–Shannon
distance. However, computing these metrics yields no additional insights into
our experiments.

In Fig. 2, we see that LUCID–GAN generates more realistic canonical inputs
than LUCID. The most prominent examples are the continuous features, where
LUCID often generates unrealistic values while LUCID–GAN generates feature
distributions that closely match the expected empirical distributions. For ex-
ample, in the feature “Education Level” of the UCI Adult data set, we see a
spike in high–school graduates (9 years), bachelors (13 years), and masters (14
years). The realism is a result of the adversarial process where the critic ensures
that the generator outputs a diverse set of synthetic samples which look similar
to the training samples. The realism also seems to lead to more outspokenness
in LUCID–GAN’s canonical inputs for at least two reasons. First, the synthetic
samples must respect all the dependencies between the features. For example, the
combination of “Male,” “Husband,” and “Married” is a strongly preferred sam-
ple in LUCID–GAN’s positive canonical set. The strong co–occurrence of these
feature values may indicate a potential for proxy discrimination. Second, it may
be easier for LUCID to change the continuous features than the categories, as
a small change in categorical features does not make any difference after post–
processing. Any change in the continuous features remains, while the categories
need to shift from one category to another due to the one–hot encoding.
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Table 1: Positivity Rate (PR) and True Positive Rate (TPR) of the subpopulations for the protected features in UCI Adult
and COMPAS.

UCI Adult

Sex Male Female
PR 31.0 11.3
TPR 73.0 72.3

Race White
Asian Pac.
Islander

Amer. Indian
Eskimo Black Other

PR 26.0 29.7 12.8 11.9 19.7
TPR 73.2 72.8 66.7 64.9 77.8

Relationship Wife Own child Husband Not in family Other relatives Unmarried
PR 47.0 1.9 45.6 10.2 3.3 5.6
TPR 71.0 100.0 72.8 78.7 100.0 81.8

Marital Status Married Divorced
Never
married Separated Widowed

Spouse
absent

Military
spouse

PR 45.3 9.7 4.7 7.0 9.1 12.6 36.4
TPR 72.6 75.0 86.2 55.6 85.7 100.0 80.0

COMPAS

Sex Male Female
PR 53.6 62.7
TPR 39.4 38.9

Race
African
American Asian Caucasian Hispanic

Native
American Other

PR 49.2 71.4 61.9 62.5 60.0 54.0
TPR 37.6 0.00 41.9 52.0 60.0 25.0
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Fig. 2: Locating direct discrimination. The feature distributions for 1000 syn-
thetic samples are shown for the positive and negative outputs in LUCID–GAN
(dark blue and dark red, respectively) and positive outputs in LUCID (light
green). For the UCI Adult data set, we show the protected features “Sex,”
“Race,” “Marital Status” and “Relationship.” We further show the features
“Age,” “Education Level,” and “Hours per Week.” For the COMPAS data set,
we show the protected features “Sex” and “Race.” We further show “Age,” which
is a categorical feature. Note that to interpret the results of LUCID–GAN, we
need to compare the positive and negative canonical sets, while for LUCID we
can compare the positive canonical set with an initial random uniform distribu-
tion (see also Appendix A). Only inspecting the feature distributions of either
the positive or negative canonical set of LUCID–GAN can lead to misleading
results as the generator is trained to mimic the underlying distribution of its
training samples.
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In Table 1, we see that the DP and EOP disparities do not always point
to the same conclusions. For example, the disparity between the PR of “Male”
and “Female” indicates a violation of DP, while their TPRs indicate that there
is EOP for both the UCI Adult and COMPAS data sets. Additionally, many
categories, including “Military Spouse” in the UCI Adult data set and “Asian”
in the COMPAS data set, do not contain sufficient data points to make any
conclusions [33]. Finally, the output–based metrics do not give any insights into
the actual drivers of the unfairness. There are some notable differences between
the output–based metrics and LUCID–GAN. For example, in the UCI Adult
data set, the DP metric indicates that “Wife” is the preferred group in the “Re-
lationship” feature. In contrast, the canonical sets indicate a strong preference
for “Husband.”

4.2 Proxy Discrimination

We retrain the models without the protected features “Race” and “Sex” and
obtain a similar accuracy on the test set. We then generate a positive and nega-
tive canonical set including the left–out protected features, by generating these
features (as part of C∗) and concatenating them to the real samples (as part of
C) given to the critic. LUCID–GAN now receives predictions from the black–box
model, which does not have “Race” and “Sex” in its input space. For the UCI
Adult data set, we keep the protected features “Marital Status” and “Relation-
ship” and assume that there are no protected features left in the COMPAS data
set. For the PR and TPR, we obtain similar scores as for direct discrimination
and therefore refer to Table 1 for a comparison. This confirms many previous
findings that removing the protected attributes does not generally improve the
disparity in the statistical output–based metrics [16].

By comparing the canonical sets from the case of proxy discrimination (see
Fig. 3) with those of direct discrimination (see Fig. 2), we see that there are some
notable differences (see also Appendix B). For example, in the COMPAS data
set, the disparity between “Male” and “Female” in the positive and negative
canonical sets has almost entirely disappeared. At the same time, the relative
values in the “Race” feature remain mostly unchanged. This may indicate that
the previous black–box model was directly discriminating based on “Sex,” while
the discrimination against “Race” is a combination of both direct and proxy
discrimination. For the UCI Adult data set, we find that the discrimination
against “Sex” and “Race” remains. This may result from the strong dependencies
between many features, such as “White,” “Male,” “Married,” and “Husband.”
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Fig. 3: Locating proxy discrimination. The feature distributions for 1000 syn-
thetic samples are shown for the positive and negative outputs in LUCID–GAN
(dark blue and dark red, respectively). For the UCI Adult data set, we show the
protected features “Sex,” “Race,” “Marital Status” and “Relationship.” We fur-
ther show the features “Age,” “Education Level,” and “Hours per Week.” For the
COMPAS data set, we show the protected features “Sex” and “Race.” We fur-
ther show the feature “Age.” Note that to interpret the results of LUCID–GAN,
we need to compare the positive and negative canonical sets. Only inspecting the
feature distributions of either the positive or negative canonical set of LUCID–
GAN can lead to misleading results as the generator is trained to mimic the
underlying distribution of its training samples.
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Fig. 4: Locating intersectional discrimination. The percentage–wise amount of
men and women per “Race” category which receive a positive output is shown
for 1000 synthetic samples where “Sex” is fixed as “Male” and “Female,” respec-
tively. Additionally, for the UCI Adult data set, we show the percentage–wise
amount of men and women per “Race” category which receive a positive output
when the “Marital Status” is fixed as “Married,” and for the COMPAS data set,
when “Age” is fixed as “> 45.”



18 A. Algaba et al.

4.3 Intersectional Discrimination

We use the original models from the direct discrimination evaluation with the
protected features “Race” and “Sex” included. In this intersectional discrimina-
tion evaluation, we generate 1000 positive canonical inputs where we keep “Sex”
fixed as “Male” and 1000 positive inputs where we keep “Sex” fixed as “Female”
by using C̃ in the conditional vector. Additionally, for the UCI Adult data set,
we generate 1000 positive canonical inputs where we also keep “Marital Sta-
tus” fixed as “Married,” and for the COMPAS data set, we keep “Age” fixed as
“> 45.” We show in each case percentage–wise the amount of men and women
per “Race” category which receive a positive output (see Fig. 4). On the heat
maps, we show a two– and three–dimensional representation of the frequency of
protected features at various intersections. For the UCI Adult data set, we find
potential discrimination against women conditional on being “White,” which
entirely disappears if we add the condition of “Married.” For the COMPAS
data set, we see indications of bias toward women conditional on being “Cau-
casian” and “African-American.” Additionally, when conditioning on “> 45”
the number of positive outputs is considerably larger for “Caucasian” compared
to “Hispanic” and “African-American.” We believe that these heat maps are
an ideal method for tracing potential sources of intersectional discrimination,
especially when data samples are scarce.

5 Conclusion

The increasing use of Artificial Intelligence (AI) algorithms in (semi–)automated
decision–making processes has raised concerns about discriminatory decision
patterns. The literature on algorithmic fairness has primarily focused on defin-
ing unfairness and eliminating unethical biases, while recent efforts focus on
rigorously detecting it. A recent proposal in this direction is LUCID (Locating
Unfairness through Canonical Inverse Design), which generates canonical sets
by performing gradient descent on the input space, revealing a model’s desired
input given a preferred output.

We present LUCID–GAN, which generates canonical inputs via a condi-
tional generative model instead of gradient–based inverse design. Using a con-
ditional generative model has several benefits, including that it applies to non–
differentiable models, ensures that a canonical set consists of realistic inputs,
and allows us to assess proxy and intersectional discrimination. LUCID–GAN
is an input–based fairness evaluation method which takes a somewhat reverse
approach to the statistical output–based metrics. Instead of comparing the pre-
dictions, we compare the (protected) feature distributions corresponding to large
positive and negative predictions. The resulting canonical sets contain valuable
information about the model’s mechanisms, i.e., which feature values are essen-
tial to obtain specific outputs. This allows us to expose potential unethical biases
in its internal logic by inspecting the distribution of the protected features.

We show how to generate canonical sets via LUCID–GAN for various fair-
ness evaluations, including direct, proxy, and intersectional discrimination, on
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the UCI Adult and COMPAS data sets. It allows for rigorously detecting un-
ethical biases in black–box models without requiring access to the training data.
Overall, we argue that LUCID–GAN is a valuable addition to the toolbox of al-
gorithmic fairness evaluation, as it offers additional transparency into the sources
of discrimination and is agnostic towards an a priori decision on the definition
of fairness and choice of protected features.
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A LUCID
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Fig. 5: Locating direct discrimination. The feature distributions for 1000 syn-
thetic samples are shown for the positive outputs in LUCID (light green) start-
ing from an initial random uniform distribution (dark blue). For the UCI Adult
data set, we show the protected features “Sex,” “Race,” “Marital Status,” and
“Relationship.” We further show the features “Age,” “Education Level,” and
“Hours per Week.” For the COMPAS data set, we show the protected features
“Sex” and “Race.” We further show the feature “Age.”
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B Comparing Direct and Proxy Discrimination
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Fig. 6: The difference between the feature distributions of direct and proxy dis-
crimination for the positive and negative outputs in LUCID–GAN (dark blue
and dark red, respectively) are shown. For the UCI Adult data set, we show
the protected features “Sex,” “Race,” “Marital Status,” and “Relationship.” We
further show the features “Age,” “Education Level,” and “Hours per Week.”
For the COMPAS data set, we show the protected features “Sex” and “Race.”
We further show the feature “Age.” A positive value indicates that the feature
appears more frequently in the distribution of direct discrimination.
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