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Abstract

Empirical evidence for the price-dividend ratio to be a predictor of the equity premium is

weak. We argue that changes in the economic conditions and market composition lead to

a time-varying relationship between prices, dividends and the equity premium. Exploiting

the information in the rolling window log-log regression of stock prices on dividends, we

obtain the Generalized Price-Dividend Ratio (GPDR), that compares the price per share with

a time-varying transformation of the dividend per share. The GPDR leads to economic and

statistical gains when forecasting the equity premium of the S&P 500 at the 1, 3, 6 and 12

month horizon, as compared to using the classical price-dividend ratio or the prevailing

historical average excess market return. Similar improvements are obtained for Generalized

Financial Ratios based on the corporate earnings and book value.
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“Clearly, Graham had found a good indicator of relative value over the near term. But he had also

found yet one more indication of how valuation standards can change with the times.”

- John C. Bogle, 2005.

1. Introduction

Risk and reward go hand in hand when deciding to invest in equities. When used as an

ex-ante concept, the equity premium expresses the reward (or premium) an investor requires

for taking on additional risk by investing in a risky equity portfolio compared to investing

in a risk-free asset, such as an AAA-rated government bond. It is also called the equity risk

premium to emphasize that it is a compensation for the risk taken when investing in stocks.

Graphically, it corresponds to the slope of the capital allocation line connecting the risk-free

asset with the risky equity portfolio in the mean-standard deviation graph of investment

opportunities. Ex-post, the realized equity premium is computed as the observed excess

return of a stock portfolio over the risk-free rate. Welch (2000) refers to the equity premium

as “perhaps the single most important number in financial economics”. A reliable prediction

of the equity premium is particularly important for asset allocation and the valuation of

risky assets.

In this paper, we contribute to the literature that uses financial ratios to predict the eq-

uity premium over a horizon that is in between one and twelve months1,2. This horizon is

relevant for the tactical component in market timing the asset allocation between the risky

(equity) portfolio and the risk-free asset. It features prominently in both academic research

(see e.g., Brennan et al., 1997; Faber, 2007; Neely et al., 2014) and in real-life asset allocation

solutions such as the Hull Tactical US ETF (Hull and Qiao, 2017).

1Other strands of the literature study the forecasting of the equity premium at both shorter and longer hori-
zons. We refer to the work of Chan et al. (1992) for an analysis of the equity premium at the daily horizon,
to Duarte and Rosa (2015) for the monthly, quarterly and annual horizon (which overlap with the ones we
consider), to Graham and Harvey (2005) and Welch (2000) for an overview of most of the relevant longer hori-
zons, to Prat (2013) for a comparison between the short- and long-term equity premium, and to Damodaran
(2009) for the determinants of the equity premium, different approaches to measure it, a comparison between
the equity premium in different countries and the relationship between the equity premium and other risk
premiums (i.e. in the bond market). The longer horizons are relevant for, among others, the valuation of
equity investments and strategic asset allocation, while the short horizons can be used for market timing the
investment decision.

2Another important part of the equity premium literature is the research on the existence of the so-called
equity premium puzzle. Stocks should generate higher returns on average than bonds, because they are riskier.
The puzzle is that the excess returns of stocks over bonds are too high to be explained by risk alone. For a recent
overview of the equity premium puzzle, we refer the interested reader to Cochrane (2017) and the references
therein.
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It is important to stress that the point-in-time value of a financial ratio is not designed to

forecast the equity premium. Instead, it is a valuation tool to express the market value in

relative terms compared to (functions of) accounting-based measures such as the dividend

or earnings per share. We find that transformations of the financial ratios that properly

account for the time-varying relationship between the variables at stake are better suited for

predicting the equity premium at the intra-year horizon than the original financial ratios.

Within the large family of financial ratios, we focus on the price-dividend ratio since divi-

dends play such a direct role in the formation of the equity premium. We then extend the ap-

proach to other well-known financial ratios, such as the (cyclically adjusted) price-earnings

ratio, the price-earnings to growth ratio, the price-to-book ratio and the bond-equity yield

ratios.

Historically, the aggregate price-dividend ratio, comparing the value weighted average

share price with the corresponding dividend value, has been pivotal to obtain predictions

of the equity premium. The intuition behind this is that, all other things being equal, a his-

torically high (low) value of the price-dividend ratio implies that the stock (market) is likely

to be (under-) overvalued and that a correction in its values is likely to follow (Cochrane,

1997).

Despite the intuitive appeal of the channel of mean-reversion through which the ratio

between prices and dividends predicts the equity premium, there is only weak empirical

evidence that the price-dividend ratio is effectively a good predictor of the US equity pre-

mium3. In early research, Fama and French (1988), Rozeff (1984) and Shiller (1984) find

that the price-dividend ratio is significantly negatively correlated with the future US equity

premium, on horizons varying from one month to four years. More recently, Goyal and

Welch (2003) find that all the evidence for predictive power has disappeared since 1990, and

that even before, the out-of-sample performance of the price-dividend ratio is rather poor.

In particular, Goyal and Welch (2008) find that, for US equities over the period 1871–2005,

the price-dividend ratio is unable to outperform the prevailing historical average equity

premium as a predictor of the equity premium. However, Cochrane (2008) claims that the

time-variation of the price-dividend ratio must contain some (excess) return predictability

3The US equity premium is defined as the total return on the US stock market minus the corresponding
prevailing risk-free rate. The value-weighted Standard and Poor’s Composite Stock Price Index (S&P 500) is
most often used as a proxy for the US equity universe. As the risk-free rate, we use the total return of investing
in the 3-month US Treasury Bill over the same horizon as the equity investment
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as he finds powerful statistical evidence that it does not predict dividend growth.

We conjecture that the weak predictive power of the price-dividend ratio for the equity

premium comes from its failure to capture two important effects on the equity premium. The

first failure is that the price-dividend ratio does not account for the time-varying economic

conditions. This issue can be related to traditional pricing theory, such as Gordon’s (1959)

dividend discount model. This model discounts the expected future dividends to calculate a

present value for the stock. The discount factor includes the constant expected required rate

of return (r) and the constant expected dividend growth (g). The price-dividend ratio fails

to incorporate this discounting information. We illustrate this in Figure 1 where we plot the

monthly S&P 500 price-dividend ratio, the two-year simple moving average of the S&P 500

pay-out ratio and the long-term interest rate from January 1956 until December 2014. The

long-term interest rate is the 10-year US Treasury constant maturity rate. As expected, we

find a negative association between interest rates and the price-dividend ratio. This provides

only a partial explanation of the the price-dividend ratio. Note, e.g., that the price-dividend

ratio is relatively stable in the sixties and the beginning of the seventies despite the increase

in interest rates from 3.8 to 7.8%. Second, the price-dividend ratio at the end of sample is

almost double the one at the beginning of the sample, notwithstanding that they have in

common that for both periods the interest rate is historically low.

The second failure is that the price-dividend ratio does not account for the time-varying

market structure. It has the implicit assumption that the composition of the prices and div-

idends and their relationship never changes. This is not true, specifically not for a value-

weighted index like the S&P 500, since its composition changes daily. Using the same price-

dividend ratio would imply comparing the market portfolio of 1980, consisting mostly of

energy companies such as Shell Oil, Standard Oil of California and Standard Oil of Indiana,

with the market portfolio of 2015, consisting mostly of IT companies such as Apple, Face-

book and Google. The market changes and so should the dynamic properties of the ratio.

This is connected to the observation in Fama and French (2001) that, due to the new listings

of low profit/high growth opportunity firms, the average dividend paid by S&P 500 firms

compared to the market value has reduced dramatically in the past decades. Moreover,

a lot of companies pursue different dividend policies to maximize their market value (Al-

Malkawi et al., 2014). Figure 1 shows the declining long-term interest rate since the eighties

which is one of the possible reasons for the recent changes in the composition of equity in-
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Figure 1: Time series of the monthly S&P 500 price-dividend ratio, the two-year simple moving average of the
S&P 500 pay-out ratio and long-term interest rate over the period January 1956 - December 2014.
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Note: This figure contains monthly observations of the S&P 500 price-dividend ratio (prices divided by divi-
dends), 2-year simple moving average of the S&P 500 pay-out ratio (dividends divided by earnings) and the
long-term interest rate. Dividends (earnings) are computed as the rolling sum of the dividends (earnings) of
the last 12 months. The long-term interest rate is the 10-year US Treasury constant maturity rate (GS10). For
a more detailed description of the data, we refer to Section 3 and 6. Shaded regions indicate the four largest
drawdown periods of the S&P 500 during the out-of-sample period (01/1976 – 12/2014), namely 12/1980 –
07/1982 (the early 1980s recession in the US), 09/1987 – 11/1987 (Black Monday), 09/2000 – 09/2002 (the
collapse of the dot-com bubble), 11/2007 – 02/2009 (the financial crisis).

dexes, such as the S&P 500. It further shows the declining trend and the wide variability

in the S&P 500 pay-out ratio. These changes in the market’s dividend policy may affect the

elasticity from prices to dividends. This elasticity can also be affected on the investor’s side

via changes (structural or not) in investors’ attitudes towards dividends and taxes (Polime-

nis and Neokosmidis, 2016).

The methodological innovation of this paper consists of solving both failures by compar-

ing the equity’s market value with a non-linear transformation of the dividend per share,

forming the Generalized Price-Dividend Ratio (GPDR). Importantly, the parameters in the

GPDR’s functional form are time-varying. We propose to capture this time-variation by the

use of Nadaraya-Watson (Nadaraya, 1964; Watson, 1964) weighted parameter estimates of

the log-log regression of the stock prices on its corresponding dividends over rolling esti-

mation samples. We consider various weighting methods and relate these to the business

cycle. Besides the univariate GPDR forecasting equation, we use two types of forecast com-

binations. The first one combines GPDRs computed over various estimation windows. It
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uses least squares optimized weights under the form of a Heterogeneous AutoRegressive,

or HAR, forecasting equation to account for the heterogeneity in the market reaction to

price changes (Corsi, 2009). The second approach combines the GPDR-based equity pre-

mium forecast with the prevailing historical average equity premium estimate by means of

a switching forecasting equation. The switches are driven by past relative performance. All

the proposed methods are in explicit form and thus are simple and fast to compute.

In an extensive out-of-sample evaluation for the period of January 1976 until December

2014, we find that the use of the GPDR leads to economic and statistical gains in predicting

the monthly S&P 500 index equity premium compared to the classical price-dividend ra-

tio, and the prevailing historical average, which has been shown to be a strong benchmark

(Goyal and Welch, 2008). We further use Goyal and Welch’s (2003, 2008) recursive residuals

(out-of-sample) graphical approach to show that the good performance is not bounded to

any specific subperiod. We also find that the relative forecasting outperformance holds at

the quarterly, semi-annual and annual horizon.

We use the same economic intuition that motivates the use of the GPDR to generalize

other financial ratios. Instead of dividends, we use other proxies for the fundamental char-

acteristic of a stock, such as the corporate earnings and book value per share. The frame-

work of generalizing financial ratios by including time-varying parameters is thus flexible

and leads to the family of the Generalized Financial Ratios.

The bottom line of our research is that, for forecasting the equity premium at the monthly

horizon, the generalized financial ratio leads to more accurate predictions than when the

traditional financial ratio is used. This result is useful for both academics and practitioners

who need an equity premium forecast when optimizing risk and reward of their investment

portfolio.

The remainder of the paper is organised as follows. In Section 2 the Generalized Price

Dividend Ratio (GPDR) is introduced. The data is described in Section 3. Sections 4 and 5

present the out-of-sample evaluation of the gains in using the GPDR instead of the classical

price-dividend ratio when forecasting the equity premium. Section 6 extends the GPDR to a

class of Generalized Financial Ratios, including also the generalized (cyclically adjusted)

price-earnings ratio, price-earnings to growth ratio, price-to-book ratio and bond-equity

yield ratios. Section 7 concludes.
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2. Methodology

In this section, we first set our notation. We then introduce the main components of the

GPDR framework to predict the equity premium: (i) general definition of the GPDR; (ii)

Nadaraya-Watson estimates of the time-varying parameters in the GPDR; (iii) the single-

regime univariate and HAR-GPDR, and switching forecasting equations to predict the eq-

uity premium. We further show that the approach of forecasting the equity premium with

the GPDR nests the special cases of forecasting the equity premium with the classical and

modified price-dividend ratio. Finally, we explain that the GPDR is at the intersection of

fundamental and technical analysis.

2.1. Notation

For convenience in notation, we present the framework in terms of forecasting the monthly

equity premium. We then apply it to forecasting the equity premium not only at the one-

month horizon, but also the quarterly, semi-annual and annual frequency using trailing 3, 6

and 12-month returns.

Throughout the paper, we use Pt and Dt to denote the end-of-period t stock prices and

dividends, whereby the observation frequency considered is monthly. The proposed frame-

work is generally applicable to forecasting (excess) returns on assets at different levels of

granularity: individual equities, sector indices and market-wide equity indices. As in Goyal

and Welch (2008), we apply the proposed methodology to the US equity market, for which

the excess return on the market capitalization weighted S&P 500 portfolio is called the US

equity premium (ERP). It is computed as follows:

ERPt = log(1+ rm
t )− log(1+ r f

t ), (1)

where r f
t denotes the (prevailing) US Treasury Bill rate and rm

t is the total return (capital and

dividend gains combined) on the S&P 500, i.e. rm
t = [Pt−Pt−1 +Dt ]/Pt−1, where Pt is the S&P

500 price index value and Dt are the dividends gained during the return period.

2.2. Definition of the GPDR

The framework of forecasting the equity premium using the GPDR is a generalization

of the approach that predicts the equity premium using the classical price-dividend ratio.

The theoretical foundation for mean-reversion and thus the predictive power of the classical

price-dividend ratio comes from the cointegration relationship between log-prices (p) and
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log-dividends (d). Campbell and Shiller’s (1988) log-linear dividend-ratio model predicts

this relationship. Adding a time index we obtain the following linear equation:

pt = α+βdt + εt , (2)

where εt is assumed to be a stationary error term with zero mean, α is a constant and β is

the cointegration coefficient between log-prices and log-dividends. If we exponentiate both

sides of the equation, we get the following fundamental price equation under Campbell and

Shiller’s (1988) log-linear approximation:

Pt = λDβ

t exp(εt),

with λ = exp(α).
(3)

Since we assume the expected value for εt to be equal to zero, the expected value for the

market price is the following:

E[Pt |εt = 0] = λDβ

t . (4)

The proposed “Generalized Price-Dividend Ratio” (GPDR) is then immediately obtained by

dividing the price by λDβ

t . The GPDR is thus defined as follows:

GPDRt(λt ,βt) =
Pt

λtD
βt
t

, (5)

where λt and βt are parameters that are allowed to be time-varying. Note that the GPDR

is essentially the observed market price divided by its theoretical value under the model

in Equation (4). It thus follows that a GPDR value of around one indicates that the stock

market is correctly priced, whereas a GPDR lower than unity means that the stock market is

underpriced and vice versa.

The time-varying parameters aim to overcome two shortcomings that the classical price-

dividend ratio has. The first shortcoming concerns the information about the time-varying

discount factor, the risk appetite, the expectations about the interest rate and the dividend

growth, among others. All this information about the time-varying economic conditions is

currently ignored when using the classical-price dividend ratio as a valuation indicator. We

do not explicitly model the discount factor that we use in our GPDR, instead we estimate

it via a data-driven approach. Our approach can be reconciled with most of the commonly

used theoretical discount factor models. As an example, we use Gordon’s (1959) dividend
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discount model to show how any discount model is compatible with the GPDR4. Gordon’s

(1959) dividend discount model looks as follows:

Pt = kDt ,

with k =
1+g
r−g

.
(6)

The model is actually a present value model that discounts all the future cashflows (in the

form of dividends) in order to give a present value of the stock. The discount factor (k)

in this model contains the constant expected required rate of return (r) and the constant

expected dividend growth (g). If we compare Equation (4) with Equation (6), one can see

that the denominator of the GPDR can be considered as a generalized present value model.

The parameter λ can then be interpreted as the estimated discount factor. The classical price-

dividend ratio does not include any information concerning the discount factor, as it is equal

to unity. In our GPDR we add the information that is concealed in the discount factor by

allowing for a time-varying discount factor λt .

The second shortcoming is about the market’s changing composition, varying dividend

policy and the shifting of investors’ attitudes towards dividends and taxes. All these ele-

ments may affect the elasticity from prices to dividends. The classical price-dividend ratio

does, by design, not account for this elasticity and its changes. The cointegration coefficient

(β) can be interpreted as an elasticity coefficient, due to the log-log regression in Equation

(2). Comparing Equation (4) and Equation (6), the cointegration coefficient is assumed to

be equal to unity in the classical price-dividend ratio. We add the elasticity information in

our GPDR by using the time-varying cointegration coefficient βt .

2.3. Estimation of the time-varying parameters

We have now defined the general functional form of the GPDR, for which the value de-

pends on the αt and βt parameters corresponding to Equation (2). It is important to remem-

ber that the economic intuition for the time-variation in the parameters is that it is partly

driven by the time-variation in other variables that are not explicit in the definition of the

GPDR, like the risk appetite, the level of risk aversion and the value of the interest rate. Since

our focus is on forecasting the ERP, understanding the exact nature of the dependence of αt

and βt on those confounding factors is of secondary importance. Moreover, the functional

4Examples of alternative models are those with a time-varying required rate of return (Campbell and Shiller,
1988) or a present value model based on consumption (LeRoy, 1973; Lucas, 1978).
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relationship is likely to be time-varying. We therefore take an agnostic view on the drivers

of the αt and βt parameters and propose to estimate these parameters using semi-parametric

estimation techniques.

The proposed semi-parametric updating scheme uses a weighted least squares approach

to estimate αt and βt in the cointegration equation regressing log-prices on log-dividends

in Equation (2). The weight functions are asymmetric to avoid look-ahead bias and use de-

caying weights to reflect that the most recently observed values are more informative about

the current fundamentally weighted value of the GPDR than the more remote observations.

The resulting estimates belong to the class of Nadaraya-Watson estimators (Nadaraya, 1964;

Watson, 1964). They are given by:

β̂t =
∑

t
s=1 w(t− s)(ps− p̂t)(ds− d̂t)

∑
t
s=1 w(t− s)(ds− d̂t)

2 , α̂t = p̂t− β̂t d̂t , (7)

where:

p̂t =
t

∑
s=1

w(t− s)ps, d̂t =
t

∑
s=1

w(t− s)ds. (8)

The function w is a generic notation for the weight function, that needs to satisfy the con-

straint that, for all u, w(u)≥ 0 and increasing, and that, for u < 0, w(u) = 0.

In this application, we will consider the weight functions that correspond to three popu-

lar methods in practice, namely estimation from inception, simple moving average estima-

tion and the exponentially weighted moving average approach. The corresponding weight

functions, where we use l to denote the time lag between the current date t and the time of

observation s, are given by:

wINC(l) = I[0≤ l]/t,

wSMA(l;m) = I[0≤ l < m]/m,

wEWMA(l;m;τ) = τ
lI[0≤ l < m]/

m−1

∑
l=0

τ
l.

(9)

The parameter m determines the length of the rolling estimation window, I[·] is an indica-

tor function and τ > 0 is the decay coefficient. Note that when wINC is used, the obtained

estimates are the standard ordinary least squares (OLS) coefficients on the sample avail-

able from inception. Every observation is equally weighted and all the observations, from

the starting point until the last observation (at time t), are used. The second weighting

method (wSMA) is the rolling window estimation method, which can be considered to be a
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simple moving average. The length of the estimation window is determined via m. The

third weighting method (wEWMA) uses an exponentially weighted moving average to do the

time aggregation on a rolling sample of m observations. The decay in the weights is deter-

mined by the strictly positive coefficient τ ensuring that recent observations carry a higher

weight. The corresponding GPDRs for each weighting scheme are denoted as INC-GPDR,

SMA-GPDR and EWMA-GPDR.

In order to use the SMA-GPDR and EWMA-GPDR, the values for the parameters m and

τ need to be set. An economically meaningful calibration is obtained by matching the coef-

ficients αt and βt with what they represent. The coefficient αt is used to capture the time-

varying discount factor λt , which should move with changing expectations about r and g

throughout the business cycle. The elasticity of prices to dividends also depends on risk

aversion and thus varies over the business cycle length. Based on this, we recommend to

set the window length (m) so that it approximates the length of an average business cycle.

Jadevicius and Hutson (2014) distinguish four different types of business cycles, namely

the Kitchin cycle (5 years), the Julgaler cycle (9 years), the Kuznets cycle (20 years) and the

Kondratieff wave (50 years). Since we allow αt and βt to be possibly rapidly time-varying

parameters, the Kitchin cycle and the Julgaler cycle seem like natural choices. This leads to

GPDR implementations using three different estimation windows, namely the expanding

window from inception and the rolling window of length equal to the Kitchin cycle, and the

Julgaler cycle. We further set the decay coefficient (τ) such that the half-life is equal to half

the length of the window.

2.4. Forecasting equations

We consider the traditional univariate forecasting equation to use the GPDR for predict-

ing the Equity Risk Premium (ERP), as well as two types of forecast combinations. We refer

to these forecast combinations as the HAR-GPDR and the switching GPDR-based predic-

tions of the ERP. The former uses least squares optimized weights to combine the predic-

tive power of GPDRs computed over windows of different lengths. The latter combines the

GPDR-based ERP forecasts with the forecasts based on the prevailing historical average ERP

using relative past forecast performance driven weights5.

5We refer to Stock and Watson (2004) and Genre et al. (2013) for a general overview on the use of forecast
combinations in economics and finance.
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2.4.1. Traditional single-regime univariate forecasting equation

The first functional form that we use to forecast the ERP using the log-transformed GPDR

is widespread in the equity premium literature, namely the regression of the ERP on a one-

period lagged predictor and a constant (see e.g., Goyal and Welch, 2008; Gupta and Mam-

pho, 2013). If we denote the estimated GPDRt as ĜPDRt , we obtain the following forecasting

equation:

ERPt = δt +θt log(ĜPDRt−1)+ et , (10)

where δt and θt are the time-varying intercept and slope parameter, and et is the error term.

Note that we expect θt to be a negative coefficient such that a higher value of the estimated

GPDR implies, ceteris paribus, lower future (excess) returns6. We use an expanding estima-

tion window to forecast the ERP for out-of-sample purposes. The corresponding predicted

ERP is then:

ÊRP
GPDR

t+1|t = δ̂t + θ̂t log(ĜPDRt), (11)

where δ̂t and θ̂t are the OLS estimates of δt and θt in Equation (10) over the available estima-

tion window.

2.4.2. Single-regime HAR-GPDR forecasting equation

In the following, we consider an extension of the univariate forecasting equation to pre-

dict the ERP to a forecasting model that includes multiple estimates of the GPDR computed

on windows of different lengths. In analogy to the Heterogeneous AutoRegressive Realized

Volatility (HAR-RV) model of Corsi (2009), we call this the HAR-GPDR model. The eco-

nomic motivation is that the ERP is a result of the demand of heterogeneous investors. In

addition to e.g., differences in endowments and risk profiles, they differ in terms of recall

of market events, because of differences in age (Korniotis and Kumar, 2011), experiences

(Kaustia and Knüpfer, 2008) and personal beliefs and preferences (Kuhnen and Knutson,

2011), among others. Moreover, the distribution of recall across investors is time-varying.

A practical implication of this time-varying heterogeneity is that the appropriate choice of

estimation window size in Section 2.3 is likely to be time-varying.

Simplifying reality, we consider that the heterogeneity leads to two possible implemen-

6Our primary interest is in predicting the ERP for which we need point estimates of δt and θt . We are not
interested in the distributional properties of the estimates of δt and θt , which would require assumptions on
the stationarity of the GPDR. Note however that the economic rationale of forecasting the equity premium
using the GPDR is that the log-transformed GPDR is the residual of the estimated cointegration relationship
between log-prices and log-dividends.
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tations of the GPDR, namely the GPDR with a medium-term memory (Kitchin cycle) and

with a long-term memory (Julgaler cycle). As intended in the original HAR-RV model we

only use simple moving averages, and thus the SMA-GPDRs and not the EWMA-GPDRs.

This leads to the following forecasting equation:

ERPt = ηt +θ
(MT)
t log(ĜPDR

(MT)

t−1 )+θ
(LT)
t log(ĜPDR

(LT)

t−1)+ et , (12)

where ηt is a constant, θ
(MT)
t denotes the OLS parameter for the medium-term memory GPDR

and θ
(LT)
t denotes the OLS parameter for the long-term memory GPDR. This model is linear

in the regression parameters and thus lends itself to convenient estimation by OLS. The

resulting ERP prediction under the HAR-GPDR approach is then:

ÊRP
HAR-GPDR

t+1|t = η̂t + θ̂
(MT)
t log(ĜPDR

(MT)

t )+ θ̂
(LT)
t log(ĜPDR

(LT)

t ), (13)

where η̂t , θ̂
(MT)
t and θ̂

(LT)
t are the OLS estimates of ηt , θ

(MT)
t and θ

(LT)
t in Equation (12) over the

available estimation window.

2.4.3. Switching forecasting equation

The linear forecasting equations in (10)–(13) have in common that they assume that the

use of the GPDR improves the forecasting precision of the ERP compared to the use of the

prevailing historical average. Such a supremacy of one model to forecast the equity pre-

mium contradicts the so-called Adaptive Market Hypothesis (AMH) of Lo (2005), which

states that the informational efficiency, and thus the economic gains in using valuation in-

dicators such as the GPDR to forecast the equity premium, are time-varying and depend on

the prevailing market regime. The approach may perform well in certain environments and

poorly in others. We cannot expect one variable to be always able to predict the ERP in all

market regimes. That is why we recommend to combine the GPDR-based forecast with the

prevailing historical average ERP forecast based on relative past forecasting performance.

More precisely, we propose to predict the ERP using a threshold switching equation. Ideally

it should switch from using the GPDR-based forecasts in (10)–(13) to the use of the prevail-

ing historical average, when it can be expected that the latter will be more precise, and vice

versa when the GPDR-forecast is expected to be more accurate.

But how to implement this in practice? First of all, we need a measure of forecasting

precision. As in Goyal and Welch (2008), we use the difference in the squared prediction

errors of the GPDR-based forecast and the historical-average based forecast. Secondly, we

13



need to define how the expectation of relative performance will be defined. For this, we use

a learning model inspired by the trend-following investment strategy of Faber (2007). It con-

sists of predicting the GPDR to be outperforming over the next month, when over the past

three months it has performed relatively better (i.e. lower squared forecasting errors) than

over the past six months. Putting those ideas together, we obtain the following switching

forecasting equation:

ÊRP
SW-GPDR

t+1|t =

ÊRP
GPDR

t+1|t if RASEt(6)≥ RASEt(3)

ÊRP
HA

t+1|t otherwise,
(14)

where ÊRP
GPDR

t+1|t is the prediction from (11), and

ÊRP
HA

t+1|t = (1/t)
t

∑
s=1

ERPs. (15)

The state variable uses the S-months Rolling Average Squared Error (RASE) between the

GPDR-based forecast and the use of the prevailing historical average:

RASEt(S) =
1
S

t

∑
s=t−S+1

(ÊRP
GPDR

s −ERPs)
2− (ÊRP

HA

s −ERPs)
2. (16)

We thus compare the RASE over the most recent six and three months. When the differ-

ence between both is negative (i.e. when the average squared prediction error of the past

six months is smaller than the average squared prediction error of the past three months),

the performance of the GPDR model has deteriorated compared to the past six months. The

timing model then assumes to have reached a period where it is difficult to predict the ERP

with the GPDR. It thus concludes that the model sophistication of the GPDR has no added

value and the simple approach of using the prevailing historical average is therefore recom-

mended. Note that the switching forecasting equation does not suffer from a look-ahead

bias as only the information up to and including time t is used.

2.5. Relation to the (modified) price-dividend ratio

The GPDR is an improvement of the classical Price-Dividend Ratio (PDR) and the Mod-

ified Price-Dividend Ratio (MPDR) defined by Polimenis and Neokosmidis (2016). Both the

PDR and MPDR are nested as special cases in the GPDR. To illustrate the added value of the

generalization, let us first consider the log-transformation of the estimated GPDR:

ĝpdrt = pt− α̂t− β̂tdt . (17)
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Plugging the right hand side definition of log(ĜPDRt−1) in the ERP forecast equation of (10)

yields:

ERPt = δt +θt(pt−1− α̂t−1− β̂t−1dt−1)+ et . (18)

The special cases of the PDR and the MPDR are obtained by restricting the time-variation

in the time-varying parameter estimates α̂t and β̂t . Firstly, if we restrict both α̂t and β̂t to be

time-invariant, then the univariate forecasting equation with the GPDR is a reparameteriza-

tion of the forecasting regression using the PDR. It follows then that the predicted values of

the ERP are identical to those obtained by regressing the ERP on the log-transformed PDR:

pdrt = pt−dt . (19)

This approach of time-invariant α̂ and β̂ assumes that there is a stable cointegration rela-

tionship between log-prices and log-dividends, which is implausible because of the time-

varying economic conditions and market composition.

Secondly, if we restrict only α̂t to be time-invariant and use β̂t as estimated for the INC-

GPDR, then the predicted values of the ERP are identical to those obtained by regressing the

ERP on the log-transformed MPDR, as given by:

m̂pdrt = pt− β̂tdt . (20)

Polimenis and Neokosmidis (2016) interpret the logarithmic MPDR as the mean-reverting

error of a long-run equilibrium between log-prices and log-dividends, and interpret the re-

cursive estimated βt to be the estimation of a static population slope coefficient β. By using

recursive estimations of βt , Polimenis and Neokosmidis (2016) do not solve the two failures

of the classical price-dividend ratio that we raise in this paper. The assumption of α̂t to be

time-invariant affects the predictions, whenever a different estimation for α̂t is used for the

INC-GPDR. Our approach is also fundamentally different by allowing βt to be a possibly

rapidly time-varying elasticity coefficient. Reflecting the evidence of Chen et al. (2016), we

allow for the price-dividend ratio to revert to its average at different speeds, accounting for

all the time-varying variables that may affect and disturb this relationship.

The inclusion of only recent (relevant) information should make the SMA-GPDR and

the EWMA-GPDR more suitable for short- and medium-term ERP forecasting, whereas the

staler MPDR is originally used for forecasting the ERP on a long horizon (more than 3 years)

by Polimenis and Neokosmidis (2016). The comparison of the MPDR and GPDR ratios for
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forecasting the ERP at horizons longer than one year is an interesting topic for further re-

search. It is beyond the scope of the present research, which focusses on exploiting the

data-evidence for forecasting the intra-year ERP.

2.6. The GPDR at the intersection of fundamental and technical analysis

In their review on data-driven tools for forecasting the ERP, Neely et al. (2014) distin-

guish between the use of technical indicators and economic fundamentals. The former use

past price and volume patterns to identify price trends believed to persist into the future,

while the latter are motivated by a fundamental valuation analysis. We consider the ap-

proach of forecasting the ERP using the GPDR as an equity valuation model that integrates

both the technical indicator and fundamental valuation approach. It has its origins in funda-

mental valuation, because prices are considered jointly with dividends in a log-log regres-

sion that follows from the valuation model in Campbell and Shiller (1988). However, the

data-driven calibration of the GPDR parameters using weighted averages of log-prices, log-

dividends and their centred cross-products can be interpreted as a technical approach. An

interesting topic for further research is to compare the GPDR-based forecasting of the ERP

with the stand-alone technical indicator and economic fundamentals approaches reviewed

in Neely et al. (2014).

3. Data and summary statistics

The dataset used in this paper consists of monthly observations on nominal prices and

dividends for the value-weighted S&P 500 index, as available from Amit Goyal’s website7.

Dividends are computed as the rolling sum of the dividends of the last 12 months, and are

not reinvested over the last year period. The data goes from January 1947 until December

2014. The monthly ERP is calculated as in Equation (1). The first nine years of the dataset are

used to estimate the time-varying parameters of the first MPDR and GPDRs which are then

available from January 1956. It follows that the first sample used to estimate the relation-

ship between the next period’s ERP and the current log-transformed value of the predictor

7It is the same data as described in Section 1 of Goyal and Welch (2008) but updated until the end of 2014.
It is available at http://www.hec.unil.ch/agoyal/docs/PredictorData2015.xlsx. In particular, the risk-free
rate is defined as the total return when investing in a 3-month US Treasury Bill during the horizon for which
the equity premium is calculated. Aggregate stock returns are taken from the Center for Research in Security
Press (CRSP), while aggregate dividends from 1947 until 1987 are taken from Robert Shiller’s website (http:
//www.econ.yale.edu/?shiller/data.htm), and from 1988 until 2014, they are from the S&P Corporation.
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consists of 20 years from January 1956 until December 1975 (240 observations). The cor-

responding out-of-sample evaluation sample consists of 39 years from January 1976 until

December 2014 (468 observations). By dividing the data up like this we avoid using data

prior to World War II8 and do not include the Oil Shock in our out-of-sample analysis avoid-

ing to give the predictors an unfair advantage9. It also respects Hansen and Timmermann’s

(2012) findings that the forecast evaluation period should be a relatively large proportion of

the available data.

Table 1 shows the summary statistics of the logarithmic PDR. Although the correlation

between the log-transformed PDR and the next month’s ERP has the expected negative sign,

it is not significant. Table 1 further shows the summary statistics of the logarithmic INC-

GPDR, SMA-GPDRs and EWMA-GPDRs. Consider first the column with the mean and

median values. Since the GPDR is computed as the residual of a regression with time vary-

ing parameters, its value is close to 0. Another consequence is that its variability is smaller

than the PDR. We see that the generalization reduces the standard deviations by two thirds

compared to the PDR and MPDR. Also, the range of each GPDR is smaller. The GPDRs

are persistent, as can be seen from the high values of the autocorrelation (between 0.92 and

0.96), but less so than than the PDR and MPDR for which the autocorrelation is above 0.99.

The last column, showing the correlation between the monthly ERP and a lagged predic-

tor, is the most important one, as it indicates the usefulness to predict the monthly ERP. We

expect this correlation coefficient to be negative. In fact, recall that the GPDR is designed to

capture the misvaluation of the market portfolio and, for large (positive or negative) values

of the GPDR a correction is expected to follow in terms of a future ERP that is lower (resp.

higher) than average when the GPDR is positive (resp. negative). This is confirmed in Table

1, where we see that the lagged logarithmic Kitchin SMA-GPDR and EWMA-GPDR have a

significant negative correlation with the monthly ERP. For the lagged logarithmic Julgaler

SMA-GPDR and EWMA-GPDR the negative correlation is not significant. The correlation

seems to lower as the window length tends to shrink.

Figure 2 compares the logarithmic Kitchin SMA-GPDR with the logarithmic PDR. The

8Lewellen (2004) recommends using only data after World War II because the properties of stock prices are
much different prior to 1945.

9Goyal and Welch (2008) show that most valuation ratios benefit from including the Oil Shock of 1973–1975
in the out-of-sample analysis and state that the most recent decades after the Oil Shock can help shed light on
whether a model is likely to still perform well nowadays.
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Table 1: Summary statistics of the end-of-month logarithmic classical, modified and generalized price-
dividend ratios over the period January 1956 until December 2014.

Variable Window Mean Median Min Max Sdev. ρ̂1 ρ̂Xt , ERPt+1

pdr 3.56 3.50 2.75 4.52 0.39 0.993 -0.04
mpdr E 3.00 2.98 2.20 3.81 0.33 0.991 0.00
INC-gpdr E 0.04 0.06 -0.69 0.83 0.31 0.989 -0.02
SMA-gpdr K 0.01 0.02 -0.56 0.25 0.12 0.935 -0.09∗∗

J 0.03 0.05 -0.57 0.43 0.15 0.956 -0.05
EWMA-gpdr K 0.01 0.02 -0.52 0.22 0.10 0.921 −0.07∗

J 0.02 0.04 -0.55 0.34 0.13 0.942 -0.05

Note: The sample goes from January 1956 until December 2014 and monthly observations are used. All vari-
ables are in logs. The window length indicates the estimation window used for estimation of the coefficients of
the variables, where E stands for expanding window from inception, while K and J stand for rolling window
of length equal to the Kitchin and Julgaler cycle. ρ̂1 denotes the autocorrelation of order 1. ρ̂Xt , ERPt+1

denotes
the correlation between the monthly equity premium (ERPt+1) and the lagged predictor (Xt ). The significance
levels are defined as follows: *** p < 0.01, ** p < 0.05, * p < 0.1.

horizontal line is the average for both ratios. The GPDR crosses its mean more frequently

than its classical counterpart. The PDR has a large upward spike which started in the mid

90s. It has only returned briefly during the start of the financial crisis in 2008. Among

others, Fama and French (2002) use this observation to develop a model where the PDR can

be mean-reverting but the mean is allowed to vary between different regimes. Because of the

rolling window calibration, the SMA-GPDRs and EWMA-GPDRs should naturally take care

of this. Moreover, these regime switching methods often work well ex-post, but have little

value for forecasting returns as these regime switches are difficult to detect ex-ante (Lettau

and Van Nieuwerburgh, 2008). The GPDR approach does not suffer from this problem.

Finally, we must compare the GPDRs with the MPDR. The best forecast performance of

the logarithmic MPDR is obtained when estimating the cointegration coefficient (βt) using an

expanding window (using wINC as weights), in line with the results published in Polimenis

and Neokosmidis (2016). For this reason, we report throughout the paper the results of

the MPDR obtained as such10. Note that the sole difference between the INC-GPDR and

the MPDR is that the former includes the time-varying αt and the latter does not. Their

correlation with the monthly ERP is insignificant.

10Polimenis and Neokosmidis (2016) also defend the use of a full-sample coefficient following the work of
Lettau and Ludvigson (2001). However, following the terms in Lettau and Van Nieuwerburgh (2008) we only
want to use a pure out-of-sample test instead of a pseudo one and thus do not include the MPDR with a
full-sample coefficient in this paper.
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Figure 2: Time series of the monthly price-dividend ratio and generalized price-dividend ratio (based on the
simple moving average with the window length of the Kitchin cycle), in natural logarithm, for the S&P 500
over the period January 1956 - December 2014.
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Note: The horizontal line is the average for both ratios. Shaded regions indicate the four largest drawdown
periods of the S&P 500 during the out-of-sample period (01/1976 – 12/2014).

4. Out-of-sample evaluation of the forecasting precision

Forecasts of the ERP are useful for asset allocation and the valuation of risky assets,

among others. In this section, we evaluate the forecasting accuracy of the monthly, quarterly,

semi-annual and annual GPDR-based forecasts of the ERP using an out-of-sample statistical

evaluation of forecast accuracy. We present full-sample statistics, and use graphical tools to

display the time series evolution of the relative forecasting performance.

4.1. Benchmark models and evaluation criterion

Benchmark models. Goyal and Welch (2008) find that the prevailing historical average (HA)

in (15) is a strong benchmark for out-of-sample comparison. It is often called the naive

forecast as the historical average can be used to see if the predictor really adds some useful

predictability in comparison with a naive investor who believes that the equity premium

will be as it always has. Individual predictors typically fail to outperform the historical

average in predicting the ERP. That is why the prevailing historical average is included

as the main benchmark prediction. As alternative benchmark prediction methods, we also

consider the random walk (RW) and an autoregressive of order 1 (AR(1)) prediction. These
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predictions are defined as follows:

ÊRP
RW
t+1|t = ERPt , (21)

ÊRP
AR1
t+1|t = ĉt + ρ̂tERPt , (22)

with ĉt and ρ̂t being the OLS estimates of the AR(1) model parameters obtained from an

expanding estimation window ending at time t.

Evaluation criterion. To measure the relative gains in forecasting precision, as compared to

the naive forecast, we report the out-of-sample R–squared coefficient (R2
OOS), which is de-

fined as follows:

R2
OOS = 100×

[
1− ∑

n
s=1(ÊRPs−ERPs)

2

∑
n
s=1(ÊRP

HA

s −ERPs)
2

]
, (23)

where n is the number of out-of-sample forecasts, ÊRP
HA

s is the naive forecast obtained using

Equation (15), and ÊRPs is the alternative ERP prediction obtained using the single-regime

univariate, HAR, random walk or AR(1) model in Equation (11), (13), (21) and (22). Each

alternative forecasting model is also combined with the switching forecasting equation in

Equation (14). The R2
OOS is multiplied by a 100 so it can be interpreted as a percentage.

A positive value indicates a relative outperformance and vice versa in case of a negative

value. According to Campbell and Thompson (2008), a monthly R2
OOS near 0.5% already

indicates an economically significant amount of predictability of the equity premium for an

investor. The statistical significance level of the R2
OOS is based on the bootstrap described

in Goyal and Welch (2008). This bootstrap technique remains valid under the Stambaugh

(1999) specification by preserving the autocorrelation structure of the predictor variable,

and also preserves the cross-correlation structure of the two residuals by drawing in tandem

(Rapach and Wohar, 2005).

4.2. Monthly equity premium

Table 2 shows the summary statistics of the predicted values for the monthly ERP ob-

tained using the single-regime and switching forecasting equations for the PDR, MPDR,

GPDRs, HAR-GPDR, RW, AR(1) and prevailing historical average. Note that the summary

statistics of the out-of-sample values of the ERP are the same as for the RW prediction com-

bined with the single-regime equation. By comparing the values for the predicted ERP with

the values for RW, we can thus make the following conclusions. First of all, we see that all

prediction methods have a lower mean value than the observed out-of-sample ERP and are
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thus too conservative. Secondly, because the ERP is predicted as a linear combination of

the GPDR with slowly time-varying coefficients, it inherits the stability of the GPDR. The

GPDR-based predictions using the single-regime forecasting equation are indeed more sta-

ble over time, as their standard deviation is often less than 10% of the standard deviation

of the realized values of the ERP. This can also be seen in terms of the autocorrelation of

order one, indicating the stability of the predicted values of the ERP. When the switching

forecasting equation is used the autocorrelation and the standard deviation are lower and

the average GPDR-based predictions move closer to the historical average. This is a result

of the shifts to the prevailing historical average as a prediction, which on average happens

half the time for all the predictors.

The two columns of Table 2 showing the R2
OOS are the most important ones as they in-

dicate the forecasting accuracy, relative to the prevailing historical average for forecasting

the monthly ERP. The prevailing historical average seems to be the strongest benchmark as

the alternative benchmark predictions are unable to outperform it when the single-regime

forecasting equation is used. It is only when the switching forecasting equation is used, that

the AR(1) is able to outperform the naive forecast but the accuracy gains are not statistically

significant. If the single-regime forecasting equation is used only three predictors are able to

significantly outperform the historical average, namely both Kitchin GPDRs and the HAR-

GPDR. The Kitchin SMA-GPDR has the best results with a R2
OOS of 0.53%. If the switching

forecast equation is used the performance becomes even better, as it reaches a R2
OOS of 1.52%.

On top of that, the Julgaler GPDRs also significantly outperform the historical average. In

general, the switching forecasting equation improves the performance of every predictor

(alternative benchmarks included). The PDR, MPDR and INC-GPDR are never able to out-

perform the historical average.

The inclusion of αt in the generalization seems to be important as the INC-GPDR is able

to outperform the MPDR. Furthermore, the shorter estimation windows, which allow for

more time-variation in the parameters, add extra forecasting power as every other GPDR is

able to outperform the INC-GPDR. Estimating the time-varying parameters on the Kitchin

cycle seems to work better than estimating them on the Julgaler cycle. A preliminary conclu-

sion that can be drawn from this is that the forecasting precision is improved by discounting

older information faster. This may also be the reason why for the Julgaler cycle, the EWMA-

GPDR has better results than the SMA-GPDR. Curiously, the EWMA-GPDR performs worse
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than the SMA-GPDR when the Kitchin cycle is used. This may be caused by putting too

much weight on recent observations which results in unstable estimates of the time-varying

parameters. The R2
OOS of the single-regime and switching HAR-GPDR, respectively 0.40%

and 1.18%, are lower than the R2
OOS of the single-regime and switching Kitchin SMA-GPDR.

We can thus conclude that combining the information of the Kitchin and Julgaler cycle does

not improve the forecasting accuracy of the GPDR. Based on these results, we see that the

estimation of the time-varying parameters between logarithmic prices and dividends bene-

fits the most of using the Kitchin cycle, especially when the simple moving average method

is used.

In the remainder of the paper, we take the Kitchin SMA-GPDR as the default implemen-

tation of the GPDR and call it the GPDR when there is no confusion possible.
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Table 2: Summary statistics of the predicted equity premium for the various forecasting methods considered,
and its precision, as measured by the out-of-sample R2 (relative to the prevailing historical average) are given
for the forecasting of the one-month S&P 500 equity premium over the out-of-sample period January 1976
until December 2014, using the single-regime and the switching forecasting equations. We further report the
frequency of naive forecasts used by the switching forecasting equation.

Single-regime Switching

Predictor Window Mean (%) Sdev. (%) ρ̂1 R2
OOS SW (%) Mean (%) Sdev. (%) ρ̂1 R2

OOS

Naive E 0.33 0.08 0.987 0.00
RW 0.51 4.36 0.047 −90.29 50.43 0.38 3.31 0.134 −53.18

AR(1) E 0.35 0.25 0.118 −0.19 50.21 0.33 0.20 0.319 0.11

pdr 0.26 0.34 0.985 −1.04 51.07 0.29 0.24 0.494 −1.16

mpdr E 0.37 0.18 0.971 −0.53 46.37 0.35 0.14 0.809 −0.48

INC-gpdr E 0.33 0.14 0.961 −0.38 50.00 0.33 0.20 0.319 −0.25

SMA-gpdr K 0.40 0.48 0.947 0.53∗∗ 52.99 0.37 0.32 0.653 1.52∗∗∗

J 0.33 0.31 0.980 −0.06 51.71 0.34 0.22 0.719 0.38∗∗

EWMA-gpdr K 0.38 0.33 0.934 0.28∗ 52.78 0.36 0.21 0.641 0.72∗∗∗

J 0.34 0.29 0.969 −0.02 51.07 0.34 0.20 0.702 0.38∗∗

HAR-gpdr K+J 0.39 0.47 0.950 0.40∗∗ 51.28 0.36 0.31 0.645 1.18∗∗∗

Note: This table contains the summary statistics of the predictions of the monthly ERP, the out-of-sample R2

(R2
OOS) for the single-regime and switching forecasting equations and the frequency of naive forecasts used by

the switching forecasting equation. The R2
OOS is calculated with respect to the prevailing historical average

and is multiplied by a 100 so it can be interpreted as a percentage (see Equation (23)). The significance levels
for the R2

OOS are based on a bootstrap with a (one-sided) Null hypothesis of the naive forecast not performing
inferior than the alternative model. The mean and standard deviation of the univariate predictions are multi-
plied by a 100 so they can be interpreted as a percentage. SW is the frequency of naive forecasts used by the
switching forecasting equation in a percentage of the total amount of forecasts. The window length indicates
the estimation window used for estimation of the coefficients of the variables, where E stands for expanding
window from inception, while K and J stand for rolling window of length equal to the Kitchin and Julgaler
cycle. The significance levels are defined as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. The out-of-sample pe-
riod contains 468 monthly observations. The initial regression is based on 240 monthly observations and an
expanding estimation window is used.
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4.3. Graphical analysis

Goyal and Welch (2003, 2008) propose to use a graphical approach analyzing the net-

difference of the cumulative sum-squared error (CSSE) between the naive forecast and the

more sophisticated prediction, which is in our case the GPDR-based prediction of the ERP:

CSSEt =
t

∑
s=1

(ÊRP
HA

s −ERPs)
2− (ÊRP

GPDR

s −ERPs)
2, (24)

and similarly for other prediction methods. Ideally, the out-of-sample CSSE performance of

the GPDR must satisfy three criteria. Firstly, the model’s performance needs a general (if

not irregular) upward drift. Secondly, the drift should not be in a short or unusual sample

period (this is why we left the Oil Shock out of the out-of-sample analysis). At last, the drift

should remain positive over the most recent several decades, otherwise it may seem that the

model has lost its forecasting power.

We evaluate these conditions in Figure 3, where we plot the time series of CSSE in (24) for

the PDR, MPDR and the Kitchin SMA-GPDR. Similar plots are obtained when the Kitchin

EWMA-GPDR and HAR-GPDR are used, as already indicated in Table 2. The upper (a)

panel concerns the single-regime univariate forecasting equation, whereas the lower (b)

panel shows the graphical result of the switching forecasting equation. The general inter-

pretation of the figure is that the line represents the difference in CSSE between the naive

model and the alternative model. An upward slope means that the alternative model is per-

forming better than the prevailing historical average and vice versa. If the graph is in the

region above zero it means a cumulative outperformance (and positive R2
OOS) with respect to

the prevailing historical average. It is easy to see how changing the starting or ending date

would impact the conclusion of the out-of-sample result by shifting the horizontal line. The

shaded areas indicate the four largest drawdowns of the S&P 500 during the out-of-sample

period.
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Figure 3: Out-of-sample cumulative sum-squared error (CSSE) performance of the prevailing historical
average-based ERP against the use of alternative ERP model predictions.
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(a) Single-regime univariate forecasting model for the ERP
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(b) Switching forecasting model for the ERP

Note: Time series plot of the cumulative sum-squared error of the prevailing historical average minus the
cumulative sum-squared error of the predictor mentioned for forecasting the S&P 500 equity premium on a
monthly forecasting horizon from January 1976 until December 2014 (x1000). Shaded regions indicate the four
largest drawdown periods of the S&P 500 during the out-of-sample period.
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The GPDR is almost always cumulatively outperforming its classical and modified coun-

terpart as well as the naive forecast. Figure 3a shows a steady positive slope with some

irregularities that mostly happen during the four indicated drawdown periods. In the first

three drawdown periods the GPDR first performs better than the prevailing historical av-

erage, only to lose this outperformance in the second part of the drawdown period. The

relative performance is the same at the beginning as at the ending of the drawdown period.

However, the same does not hold for the last drawdown (i.e. the financial crisis 2007–2009).

The GPDR in combination with the single-regime univariate forecasting equation loses all

its outperformance during this period. This last major drawdown is the only reason why

the switching forecasting equation is outperforming the single-regime univariate forecast-

ing equation. Using the switching forecasting equation combined with the GPDR makes

those declines disappear, but also causes the slope to become flat more often (52.99% of the

predictions). This occurs when the data indicates that a more unpredictable market period

has been reached and that an investor is better off using the naive forecast instead of the

alternative model. Overall, Figure 3b confirms that the switching forecasting equation aug-

ments the statistical performance of the GPDR compared to the historical average.

4.4. Quarterly, semi-annual and annual equity premium

The previous analysis has shown that the GPDR leads to more accurate forecasts of the

monthly equity premium. We now show that the GPDR has also added value in terms of

accuracy gains when forecasting the quarterly, semi-annual and annual equity premium.

Increasing the horizon makes the predictions more useful for tactical asset allocation with

less frequent rebalancing moments, the valuation of equity investments or strategic asset

allocation.

Table 3 shows the R2
OOS for the PDR, MPDR, Kitchin SMA-GPDR and the alternative

benchmark models relative to the historical prevailing average for forecasting the trailing

3, 6 and 12-month ERP, using the single-regime and switching forecasting equations. It

further shows the frequency of naive forecasts used by the switching forecasting equation

in a percentage of the total amount of forecasts (SW ). To account for the longer return length

and the overlapping nature of the returns, we add the return length to the window lengths

(S) of the state variable in Equation (16) (i.e. for the trailing 3-month ERP the state variable

uses window lengths 6 and 9 instead of 3 and 6).

The R2
OOS results in Table 3 show that the prevailing historical average remains the strongest
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Table 3: The out-of-sample R2 (relative to the prevailing historical average) is given for the forecasting of
the trailing 3, 6 and 12 month S&P 500 equity premium over the out-of-sample period January 1976 until
December 2014 for the PDR, MPDR, Kitchin SMA-GPDR and the alternative benchmark models, using the
single-regime and switching forecasting equation, together with the frequency of naive forecasts used by the
switching forecasting equation.

Single-regime Switching

R2
OOS R2

OOS SW (%)

Predictor 3 6 12 3 6 12 3 6 12

RW -89.82 -91.06 -99.06 -31.55 -61.67 -56.85 44.66 36.11 36.54
AR(1) -41.89 -65.23 -86.85 -14.78 -45.47 -49.23 46.15 36.97 36.75
pdr -3.39 -8.97 -22.12 -1.81 -1.32 -7.96 52.78 51.92 48.72
mpdr -1.44 -2.29 -5.45 -1.21 -0.55 -0.90 43.80 48.72 44.66
SMA-gpdr 1.63∗∗∗ 3.45∗∗∗ 3.34∗∗∗ 3.04∗∗∗ 3.38∗∗∗ 5.77∗∗∗ 54.27 58.55 56.20

Note: This table contains the out-of-sample R2 (R2
OOS) for the single-regime and switching forecasting equations

and the frequency of naive forecasts used by the switching forecasting equation. The R2
OOS is calculated with

respect to the prevailing historical average and is multiplied by a 100 so it can be interpreted as a percentage
(see Equation (23)). The significance levels for the R2

OOS are based on a bootstrap with a (one-sided) Null
hypothesis of the naive forecast not performing inferior than the alternative model. SW is the frequency of
naive forecasts used by the switching forecasting equation in a percentage of the total amount of forecasts. The
significance levels are defined as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. The out-of-sample length contains
468 monthly observations. The initial regression is based on 240 monthly observations and an expanding
estimation window is used.

benchmark for all the considered longer horizons as the RW and AR(1) are unable to out-

perform it, even combined with the switching forecasting equation. We further see that

the single-regime and switching PDR and MPDR forecasting equations are also unable to

outperform the historical average at any horizon. The R2
OOS of the GPDR varies between

1.63% and 5.77% and is statistically significant at all horizons for both the single-regime

and switching forecasting equations, indicating that the relative forecasting outperformance

holds at longer horizons. In general, the switching forecasting equation improves the fore-

casting accuracy of each predictor.

When we analyze the frequency of naive forecasts used by the switching forecasting

equation in Table 3, we see that the RW and AR(1) use the naive forecast less often for longer

forecasting horizons, declining from about 50% to 36%, while the GPDR uses it slightly more

often.

The bottom line is that the GPDR succeeds in significantly outperforming the prevailing

historical average, while all the considered benchmarks are unable to, and that the switching

forecasting equation improves the forecasting accuracy.
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5. Out-of-sample evaluation of the economic value for tactical asset allocation

Our empirical results suggest that the GPDR leads to more accurate out-of-sample fore-

casts of the ERP at the intra-year horizon. We now examine whether these statistical gains

can also have economic value when a mean-variance utility maximizing investor uses the

GPDR-based prediction of the ERP for tactical asset allocation.

5.1. Tactical asset allocation implementation

We consider a risk-averse investor with mean-variance preferences who allocates his

wealth across equities and risk-free bills at regular rebalancing times, namely at the last

trading day of each month, quarter and year. The optimal fraction of his wealth that he

allocates to equities (ωt) is determined via the following objective function:

max
ωt

Et[r
p
t+1]− 1

2
γVart(r

p
t+1), (25)

where rp
t+1 = r f

t+1 +ωt(r
m
t+1− r f

t+1) and, conditional on the information available at time t,

Et[r
p
t+1] is the expected value of the portfolio return and Vart(r

p
t+1) is the corresponding vari-

ance of the portfolio returns11. The degree of relative risk aversion is denoted by γ. Fol-

lowing Goyal and Welch (2008), we set γ = 3, which is low enough to favour equity-tilted

strategies and thus find an effect of the method used to predict the equity premium.

To solve the maximization problem in equation (25) we consider a myopic investor with

a one-period investing horizon. From the first order conditions, it follows directly that the

optimal allocation weight to equities during the month t + 1 at the end of every month t is

given by:

ωt =
Et[r

m
t+1− r f

t+1]
γVart(r

m
t+1)

, (26)

where Et[r
m
t+1−r f

t+1] is a prediction of the ERP over the investment horizon, and Vart(r
m
t+1) is

a prediction of its the variance. Both predictions are for time period t+1 and are conditional

on the information available in time period t. We use the prevailing historical average, and

the single-regime univariate and switching forecasting equations of the PDR, the MPDR and

the Kitchin SMA-GPDR for the prediction of the ERP. We further assume the investor to use

a 5-year moving window of monthly stock returns to estimate the variance. It is important

to note that the obtained results are only for comparison and cannot be considered to be the

11We refer to Ardia et al. (2016) and references therein for a more general tactical portfolio optimization
problem that involves also optimizing the allocation of the equity portfolio to the underlying stocks.
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optimal results with these ERP predictions as ωt also depends on the forecast of the variance.

In order to safeguard the analysis against extreme estimation errors, we use in practice a

constrained version of the optimized portfolio, obtained by imposing the box constraints

that 0≤ ωt ≤ 1.5 and thus allowing for a leverage of at most 50% (Campbell and Thompson,

2008).

In Table 4 we report for each portfolio its average equity weight (ωt), and its annualized

portfolio return, volatility, downside deviation, Sharpe ratio, Sortino ratio, turnover and

certainty equivalent return gain. The mean portfolio return is geometrically annualized.

The downside deviation aims to make a distinction between “good” and “bad” volatility

and to account for the asymmetric distribution of returns. It is estimated as the square root

of the mean squared deviation of the returns and risk free rate, when the returns are below

the risk-free rate. It thus only includes the negative, or bad, volatility. The Sharpe ratio

is the geometrically annualized excess mean portfolio return divided by its corresponding

standard deviation. The Sortino ratio is similar to the Sharpe ratio but uses the downside

deviation instead of the standard deviation. To show the potential impact of transaction

costs, we further report the annualized turnover. It is the average wealth traded (i.e. bought

and sold) per year in percentage of the total portfolio size (DeMiguel et al., 2009).

Finally, we also estimate the certainty equivalent return (CER) for each portfolio, defined

as the return a risk-free investment should offer in order to yield the same expected utility

as the risky portfolios that we consider. The estimation is based on equalizing the out-of-

sample mean-variance utility, and thus leads to a CER estimate equal to:

CERp = µ̂p−
1
2

γσ̂
2
p, (27)

where µ̂p is the arithmetic average of the investor’s realized portfolio returns over the whole

forecasting period and σ̂
2
p is the portfolio variance. To facilitate the interpretation, we follow

Neely et al. (2014) by reporting the CER gain of the portfolios using the ERP predictions

based on the PDR, MPDR and GPDR compared to the portfolio using the prevailing histor-

ical average. We multiply the CER gain by 100 to interpret it as a percentage. We further

multiply it by 12 for the monthly allocation exercise and by 4 when the rebalancing is at a

quarterly frequency in order to annualize it. This allows us to interpret the resulting annual-

ized CER gain as the annual percentage fee that a naive investor would be willing to pay in

order to use the alternative prediction method instead of the prevailing historical average.
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5.2. Out-of-sample results for tactical asset allocation

We compare portfolios based on monthly, quarterly and annual ERP forecasts obtained

using the prevailing historical average, and the single-regime univariate and switching fore-

casting equations of the PDR, the MPDR and the Kitchin SMA-GPDR. The performance

results of the dynamic tactical asset allocation exercise can be found in Table 4. The single-

regime PDR-based portfolios have the lowest average equity weights at about 60%, while

the single-regime MPDR and historical average based portfolios have the highest at about

80%. The average equity weight of the single-regime GPDR is in between those at about

75%. Using the switching forecast equation generally increases the average equity weight

which is caused by the frequent use of the naive forecast.

We see that the GPDR-based portfolios always generate the highest annualized mean

portfolio return, both when the single-regime and switching forecasts equations are used.

This comes at the price of a slightly higher volatility, but the annualized Sharpe ratio in-

dicates that the excess return over the other portfolios compensates the excess volatility.

Inspecting the downside deviation and Sortino ratio, we find that the excess volatility that

is created using the GPDR-based predictions is mainly so-called “good” volatility, meaning

that most of the excess volatility is from portfolio returns higher than the risk-free rate.

The relative outperformance in portfolio measures is confirmed by the annualized CER

gain which is always positive for the GPDR-based portfolios. A naive investor would be

willing to pay an annual percentage fee varying between 0.85% and 3.28%. For the monthly

and quarterly rebalancing the single-regime GPDR-based portfolios perform better than the

switching portfolios, while it is the other way around for annual rebalancing. All the con-

sidered benchmarks are unable to outperform the prevailing historical average, except for

the portfolio using the annual predictions based on the PDR switching forecast equation.

The results above are for gross returns and thus before transaction costs. In Table 4 we

see that the annualized turnover of the best performing portfolios, namely the single-regime

GPDR-based portfolios for monthly and quarterly rebalancing and the switching GPDR-

based portfolio for annual rebalancing, is a lot higher compared to the prevailing historical

average and PDR-based portfolios. The outperformance in terms of net returns thus de-

pends on the level of transaction costs. We verified that for proportional transaction costs

up to 100 basis points the mean-variance utility maximizing investor is better off using the

GPDR predictions compared to all the considered benchmarks. Moreover, when imposing
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Table 4: The average ωt and annualized return, volatility, downside deviation, Sharpe ratio, Sortino ratio,
turnover and certainty equivalent return gain (relative to the prevailing historical average) of a portfolio using
the equity premium forecasting approach compared to the portfolio obtained using the naive equity premium
forecast when the portfolio is rebalanced on a monthly, quarterly and annual basis for the forecasting period
of January 1976 until December 2014.

Single-regime Switching
Naive pdr mpdr SMA-gpdr pdr mpdr SMA-gpdr

Panel A: Monthly rebalancing

Average Equity Weight (%) 77.28 60.63 78.52 75.13 67.10 77.92 78.08
Ann. Return (%) 9.40 6.49 8.62 13.29 7.09 8.62 11.97
Ann. Volatility (%) 13.05 13.06 13.91 15.30 12.69 13.57 14.26
Ann. Downside Deviation (%) 10.01 9.55 10.79 10.48 9.71 10.68 10.13
Ann. Sharpe Ratio 0.32 0.11 0.25 0.52 0.15 0.25 0.46
Ann. Sortino Ratio 0.42 0.15 0.32 0.75 0.20 0.32 0.65
Ann. Turnover (%) 26.74 71.09 41.61 176.05 268.27 62.02 228.76
Ann. CER gain (%) 0.00 -2.74 -0.94 2.87 -2.07 -0.85 2.00

Panel B: Quarterly rebalancing

Average Equity Weight (%) 78.37 60.88 78.95 75.48 70.03 78.55 78.35
Ann. Return (%) 9.42 6.80 8.33 13.70 8.11 8.73 11.20
Ann. Volatility (%) 14.58 13.97 15.20 16.61 14.35 14.98 15.83
Ann. Downside Deviation (%) 10.43 9.75 11.37 10.13 10.14 11.16 10.42
Ann. Sharpe Ratio 0.29 0.12 0.21 0.50 0.21 0.24 0.37
Ann. Sortino Ratio 0.40 0.17 0.28 0.81 0.29 0.32 0.56
Ann. Turnover (%) 19.70 43.93 28.23 112.02 142.97 34.86 114.89
Ann. CER gain (%) 0.00 -2.30 -1.19 3.28 -1.17 -0.75 1.25

Panel C: Annual rebalancing

Average Equity Weight (%) 80.12 61.59 77.35 72.94 77.06 81.78 81.33
Ann. Return (%) 9.67 7.81 8.62 11.12 10.14 9.39 11.27
Ann. Volatility (%) 17.67 14.73 17.86 19.27 16.08 17.67 17.63
Ann. Downside Deviation (%) 11.78 8.70 12.56 12.01 8.72 12.04 10.93
Ann. Sharpe Ratio 0.25 0.19 0.19 0.31 0.30 0.24 0.34
Ann. Sortino Ratio 0.38 0.30 0.27 0.48 0.56 0.35 0.54
Ann. Turnover (%) 14.26 23.36 20.29 46.64 39.24 18.55 36.98
Ann. CER gain (%) 0.00 -1.10 -1.06 0.85 0.78 -0.27 1.57

Note: This table shows the average equity weight (ωt ), the out-of-sample annualized return (%), volatility
(%), downside deviation (%), Sharpe ratio, Sortino ratio, turnover (%) and certainty equivalent return gain
with respect to the prevailing historical average (%) for each portfolio. Portfolios are rebalanced on a monthly,
quarterly and annual basis. The relative risk aversion coefficient (γ) is 3. The window length indicates the
estimation window used for estimation of the coefficients of the variables. The out-of-sample length contains
468 monthly observations. The initial regression is based on 240 monthly observations and an expanding
estimation window is used.
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more strict box constraints such as 0 ≤ ωt ≤ 1 (no leverage allowed) or 0.4 ≤ ωt ≤ 0.8 (more

conservative constraints), the turnover of the portfolio can be substantially reduced while

the relative outperformance remains.

In conclusion, the use of the GPDR-based ERP forecasts substantially improves the out-

of-sample performance of tactical allocation portfolios. This result is robust to reasonable

values of transaction costs and holds for monthly, quarterly and annually rebalancing of the

portfolio.

6. Generalized financial ratios

Whenever a financial ratio compares the current price of the equity portfolio with a char-

acteristic of that portfolio, it may benefit from our proposed generalization. Our contribu-

tion thus goes beyond generalizing the price-dividend ratio (PDR), and its use in forecasting

the equity premium. The same economic intuition that is founding the generalization of the

PDR can be used as a motivation to improve upon other popular price-based financial ra-

tios, such as the (cyclically adjusted) price-earnings ratio, the price-earnings to growth ratio,

the price-to-book ratio and the bond-equity yield ratios. In this section, we thus show that

the framework of generalizing financial ratios that we propose is flexible and leads to the

family of Generalized Financial Ratios (GFRs). We generalize financial ratios constructed

out of other proxies and use them to predict the monthly ERP. Key results are shown and

discussed.

6.1. Other choices for the fundamental characteristic

The current analysis shows that the aggregate dividends are a useful variable to predict

the ERP. In this section we consider alternative predictive variables of three kinds. Firstly,

earnings (E) variables related to the popular price-earnings ratio (PER), the cyclically ad-

justed price-earnings ratio (CAPE) and price-earnings to growth ratio (PEG). The CAPE

uses real values instead of nominal ones. These real earnings are also a 10-year simple mov-

ing average to adjust for business cycles. The PEG resembles to the PER, but includes the

growth rate (g) in the fundamental characteristic. Secondly, the book value of the S&P 500

firms (BV ), as used in the price-to-book ratio (PB). Thirdly, the firm valuation as obtained un-

der the constant dividend (earnings) perpetuity valuation model, with the inclusion of the

long-term risk-free rate (i.e., D/R f and E/R f , respectively). The latter assumes that the divi-

dends (earnings) remain constant at the last observed value. We thus obtain the Bond-Equity
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Table 5: Financial ratios and their fundamental characteristics.

Predictor pdr per cape peg pb bedyr beeyr

Xt Dt Et CA Et Et/gt BVt Dt/R ft Et/R ft

Note: Xt is the fundamental characteristic at time t. CA stands for cyclically adjusted and means the 10-year
simple moving average of the real values. Dt and Et are the S&P500 nominal dividends and earnings. BVt is the
S&P 500 book-value. gt is the 10-year growth rate of nominal earnings. R ft is the 10-year US Treasury constant
maturity rate.

Yield Ratio (BEYR), studied in Giot and Petitjean (2007), among others. Note that it can be

seen as an extension of the PEG, but instead of including the growth rate in the fundamental

characteristic the long-term risk-free rate (R f ) is included. A distinction is made between

the Bond-Equity Dividend Yield Ratio (BEDYR) and the Bond-Equity Earnings Yield Ratio

(BEEYR). All the alternative fundamental characteristics and their corresponding predictor

can be found in Table 5.

To formalize the generalization, denote Xt as the fundamental characteristic used such

that we can generalize equation (5) as follows:

GPXRt(λt ,βt) =
Pt

λtX
βt
t

. (28)

The data used in this section is obtained from Amit Goyal’s website12 and from Robert

Shiller’s website13. Again, monthly observations are used. The period in this section is

the same as in the previous ones. That goes for in- and out-of-sample. For the PER the nom-

inal earnings, calculated as sum of the earnings of the last 12 months, are used. The CAPE

uses real prices and earnings instead. The Consumer Price Index (CPI) is used to deflate

the nominal values and to avoid a look-ahead bias 1947 is used as base year. The earnings

growth rate is the 10-year growth rate of nominal earnings14. The book-value of the S&P 500

is based on the market-to-book ratio used in Goyal and Welch’s (2008) paper. The long-term

interest rate is the 10-year US Treasury constant maturity rate (GS10). For a more detailed

description of the earnings and book-value we refer to Goyal and Welch (2008), and for the

CPI and long-term interest rate to Robert Shiller’s website.

12It is available at http://www.hec.unil.ch/agoyal/docs/PredictorData2015.xlsx.
13It is available at http://www.econ.yale.edu/?shiller/data.htm.
14The logarithmic PEG and generalized PEG require positive values for earnings growth. In practice, we

impose this by winsorizing the estimated earnings growth numbers at 1%. This affects only 1.7% of the obser-
vations, which all occur during the last financial crisis (2007-2009).
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6.2. Out-of-sample results of the GFRs

Table 6 shows the key results when other proxies than the dividends are used in the form

of GFRs to predict the monthly ERP. The in-sample period goes from January 1956 until

December 2014 and the out-of-sample period starts in January 1976. To generalize the ratios

the Kitchin and the Julgaler cycle are used. Only the simple moving average estimation

method is used as the previous results in this paper show that these are representative for the

generalization. The single-regime univariate and switching forecasting equations are used.

The results are all with respect to the prevailing historical average so they can be compared

with the performance of all the previous predictors. We have an in-sample measurement in

the form of an in-sample correlation, and the out-of-sample performance metrics R2
OOS and

the annualized CER gain.

The results of the generalization are less clear with the alternative fundamental charac-

teristics. Sometimes it does help in statistical terms and not in economic terms and vice

versa. The same can be concluded for using the switching forecasting equation. The gener-

alized BEEYR is able to significantly outperform the prevailing historical average. The other

variables are in general unable to outperform the prevailing historical average. The fact

that it is hard to predict the monthly ERP with a single variable is in line with the findings

of Goyal and Welch (2008). Compared to all these variables the SMA-GPDR based on the

Kitchin cycle remains the best forecaster of the monthly ERP.

The bottom line of the investigation of using the generalized financial ratios is that the

flexibility of the approach offers opportunities to use alternative stock characteristics than

the dividends per share, but that, over the alternatives considered, the GPDR is the general-

ized financial ratio that we recommend to use, as it leads to the most reliable results in terms

of statistical accuracy and economic benefits.

34



Table 6: The correlation between a lagged predictor and the monthly equity premium, the R2
OOS (relative to the

prevailing historical average) and the annualized certainty equivalence return gain (relative to the prevailing
historical average) are shown for classic predictors and generalized predictors based on the simple moving
average of the Kitchin and Julgaler cycle using the single-regime and switching forecasting equations.

Single-regime Switching

Panel A: Forecasting the monthly ERP using the classical financial ratios

Predictor per cape peg pb bedyr beeyr per cape peg pb bedyr beeyr

ρ̂Xt , ERPt+1
-0.02 -0.03 -0.02 -0.01 −0.09∗∗ −0.07∗

R2
OOS -0.60 -0.46 -1.00 -0.73 -0.59 -0.38 -0.20 -0.45 -0.66 -0.58 -1.43 -0.61

Ann. CER gain (%) 0.23 -1.51 -1.83 -1.31 -0.98 0.86 0.79 -1.47 -1.28 -1.24 -1.67 -0.04

Panel B: Forecasting the monthly ERP using the generalized financial ratios

Predictor gper cagpe gpeg gpb gbedyr gbeeyr gper cagpe gpeg gpb gbedyr gbeeyr

Kitchin cycle (SMA)
ρ̂Xt , ERPt+1

-0.02 0.00 0.00 -0.01 -0.02 −0.08∗∗

R2
OOS -0.40 -0.46 -0.71 -0.62 -0.52 0.58∗∗ -0.29 -0.36 -0.44 -0.40 -0.09 0.32∗∗

Ann. CER gain (%) -0.94 -1.07 -0.80 -1.27 -0.72 1.02 -0.78 -0.91 -0.28 -0.72 -0.31 0.67
Julgaler cycle (SMA)
ρ̂Xt , ERPt+1

-0.02 0.00 -0.02 0.00 -0.06 −0.08∗∗

R2
OOS -0.59 -0.56 -0.59 -0.98 0.07 0.63∗∗ -0.48 -0.32 -0.40 -0.62 0.06 0.32∗∗

Ann. CER gain (%) -0.58 -1.04 -1.35 -1.29 0.90 1.59 -0.51 -0.76 -0.77 -0.67 0.41 0.58

Note: This table contains the correlation between a lagged predictor and the monthly equity premium, the
R2

OOS with respect to the prevailing historical average and the annualized certainty equivalence return gain
with respect to the prevailing historical average (in %). ρ̂Xt , ERPt+1

denotes the correlation between the monthly
equity premium (ERPt+1) and the lagged predictor (Xt ). The in-sample correlation is based on 708 monthly
observations from 01/1956 until 12/2014. The R2

OOS is calculated with respect to the naive forecast and is
multiplied by a 100 so it can be interpreted as a percentage (see Equation (23)). The significance levels for
the R2

OOS are based on the bootstrap with a (one-sided) Null hypothesis of the naive forecast not performing
inferior than the alternative model. The out-of-sample length contains 468 monthly observations. The initial
regression is based on 240 monthly observations and an expanding estimation window is used. The relative
risk aversion coefficient (γ) is 3. The window length indicates the estimation window used for estimation of
the coefficients of the variables. All the predictors are in logs. The significance levels are defined as follows:
*** p < 0.01, ** p < 0.05, * p < 0.1.
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7. Conclusion

The price-dividend ratio (PDR) expresses the stock’s price per unit of dividend the firm

pays to its shareholders. There is only weak empirical support for the modern finance pre-

diction that the PDR ought to predict either stock returns or dividend growth. We argue

that predicting the equity premium using the information in the PDR can be substantially

improved by accounting for the time-variation in the discount factor, the market compo-

sition, dividend policy and the investors’ attitudes towards dividends and taxes. More

specifically, we propose to compare the price per share with a time-varying function of the

dividends per share. The time-variation in the parameters is intended to account for the

aforementioned confounding factors causing the disconnection between the price-dividend

ratio and the equity premium. We find that the resulting Generalized Price-Dividend Ratio

(GPDR) improves the forecasting precision for the US intra-year equity premium from Jan-

uary 1976 until December 2014. Importantly, we document that these statistical gains also

have economic value in terms of a better investment performance when using these predic-

tions for tactical asset allocation. Similar gains in performance are found when generalizing

financial ratios comparing the market valuation with corporate earnings or book value. Of

all ratios considered, the GPDR performs best in predicting the intra-year US equity pre-

mium. The generalized bond-equity earnings yield ratio and the generalized bond-equity

dividend yield ratio are second and third best. We obtain these results for the US aggregate

stock market. In further research, one could follow Lawrenz and Zorn (2017) and explore

whether the GPDR is able to predict (excess) stock returns in an international time-series or

cross-sectional context.
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